Hydrogen-induced structure transition in LaNi$_3$B

Y. Filinchuk, K. Yvon

Laboratory of Crystallography, University of Geneva, Switzerland

Synthesis

A structure transition has been monitored by X-ray diffraction on a single-crystal measured before and after hydrogen treatment.

For the first time

The symmetry of the structure lowers from Imma to Cmcm ($a' = 2a$, $b' = 2b$) upon hydrogenation!!!

Deuteride: autoclave hydrogenation

LaNi$_3$BD$_{3.73}$ - room temperature, 5-100 bar D$_2$

Single crystal data for LaNi$_3$B and LaNi$_3$BH$_{2.7}$

<table>
<thead>
<tr>
<th>Empirical formula</th>
<th>LaNi$_3$B</th>
<th>LaNi3BH${2.7}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula weight</td>
<td>325.85</td>
<td>325.85 (no H atoms)</td>
</tr>
<tr>
<td>Space group</td>
<td>Imma Cmcm</td>
<td>Imma Cmcm</td>
</tr>
<tr>
<td>c/a</td>
<td>4.78(3)</td>
<td>4.78(3)</td>
</tr>
<tr>
<td>b/a</td>
<td>10.76(2)</td>
<td>10.76(2)</td>
</tr>
<tr>
<td>Z, D$_2$ (H atoms) 1</td>
<td>4, 7.353</td>
<td>4, 7.353</td>
</tr>
<tr>
<td>δ_{Ga} / δ_{Ga} 2</td>
<td>0.65 / 85.4</td>
<td>0.65 / 85.4</td>
</tr>
<tr>
<td>R${int}$/R${sigma}$</td>
<td>0.0304 / 0.0127</td>
<td>0.0304 / 0.0127</td>
</tr>
<tr>
<td>R$_1$/wR_1$</td>
<td>0.0543 / 0.0684</td>
<td>0.0543 / 0.0684</td>
</tr>
<tr>
<td>Goodness of fit on R^2</td>
<td>1.853</td>
<td>1.853</td>
</tr>
<tr>
<td>Largest diff. peak and hole in \AA^3</td>
<td>-3.501 and -1.748</td>
<td>-3.501 and -1.748</td>
</tr>
</tbody>
</table>

Thermal displacements for the Ni2 and La atoms in the alloy structure

- Foresee site symmetry degeneration observed in the structure of the hydride.
- 95% and 50% probability anisotropic thermal ellipsoids are shown for LaNi$_3$B and LaNi$_3$BH$_{2.7}$ structures (single crystal XRD).

Symmetry: changes upon hydrogenation according to a group-subgroup sequence: Imma \rightarrow [2] Pmnb \rightarrow [2] Bnmb ($a' = 2a$, $c' = 2c$), b' and c' interchanged to use the standard setting Cmcm

Synchrotron powder diffraction on the alloy and hydride samples confirmed our observations of the structure transition, resulting in a single-crystal-like quality of the structural parameters derived by Rietveld refinement.

The same thermal ellipsoid for Ni2 atom as from single-crystal data

Cell expansion:

- Apart from a unit cell doubling along a and b the structure expands in the a-b plane (by up to $\sim 8\%$) and contracts along c (by $\sim 3\%$).

D atom sites:

- Four deuterium positions tend to be fully occupied in stoichiometric LaNi$_3$BD$_3$;
 - D1, D2 – La$_3$Ni$_7$ tetrahedron, D3 – La$_3$Ni$_3$ prism, D4 – La$_3$Ni$_3$ TBP;
 - La-B planes do not accommodate hydrogen.

Neutron powder diffraction

HRPT at PSI

D1, D2

D4

Ni atoms environment:

- Ni1 - cis-square B,D$_2$;
 - Ni2 - strongly distorted B,D$_2$ tetrahedron;
 - Ni3, Ni4 - TBP with 3D plus 2B in apices

Two dimensional Ni-D framework in the LaNi$_3$BD$_{3.73}$ unique in metal hydride structures

Neutron powder diffraction in a double-walled V-cylinder

HRPT instrument at PSI, 1.494 Å

Alcohols hydrogenation at near ambient conditions

- Pressure-composition isotherm of LaNi$_3$BH$_3$ at 28°C; max. H-content 2.4 H/f.u. (1st cycle)

Weight increase, %

- Ni$_2$B$_x$ - strongly distorted B,D$_2$ tetrahedron;
 - Ni$_3$, Ni$_4$ - TBP with 3D plus 2B in apices

Two dimensional Ni-D framework in the LaNi$_3$BD$_{3.73}$ unique in metal hydride structures

Synthesis

- arc-melting, the phase appears only after annealing at 800°C

- autoclave hydrogenation

- room temperature, 5-100 bar D$_2$