Structural Studies of Metal-Hydrogen Interactions in Solid-State Metal Hydrides

K. Yvon, Y. Filinchuk, S. Gomes, G. Renaudin, Y. Tokaychuk

Laboratoire de Cristallographie, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland

Metal-hydrogen interactions lead to a variety of interesting phenomena such as metal-semiconductor transitions (LaMg₂NiH₇), directional metal-hydrogen bonding (ErNi₃-H, LaNi₃B-H), hydrogen induced valence transitions $(CeMn_{1.8}Al_{0.2}-H)$, unexpected H-site energies $(ZrTi_2H_x)$, frequency dependence of B-H modes on metal atom size $(MBH_4; M=Na, K, Rb, Cs, and metal atom relaxations by ~0.6 Å around vacancies on H sites (RH_{3,x} R=La, Nd).$

in

The project studies the influence of metal-hydrogen interactions on physical and chemical properties of various metallic, covalent and ionic metal-hydrogen systems.

Hydrogenation of metallic $Ce(Mn_{1-x}Al_x)_2$ leads to a volume expansion of $\Delta V/V=42\%$ that is the largest known among metal hydrides, and a metal atom site exchange driven by repulsive Al-H interactions. Magnetic susceptibility data confirm a H-induced valence transition from Ce^{IV} to Ce^{III}.

The occupancies of adjacent deuterium sites in metallic ZrTi₂D_{4,3} have been studied at high temperature in-situ measurements (DMC). The site energy of the smaller ZrTi₃-type interstices is higher by ~127meV than that of the bigger Zr₂Ti₂-type interstices. This value is of the same order of magnitude as the energy difference between the vibrational ground state and the first excited state of hydrogen in ZrTi₃-type interstices as found in a previous INS study, but different in sign from that derived from model calculations.

A hydrogen induced metal-semiconductor transition without major changes in the metal substructure has been discovered in the LaMg₂Ni-H system. High-resolution data on D2B (ILL) reveal tetrahedral 18-electron $[NiH_4]^{4-}$ complexes and "interstitial" hydride anions H⁻ surrounded by La and Mg only suggesting the limiting ionic formula $LaMg_2NiH_7 = La^{3+}.2Mg^{+2}.[NiH_4]^{4-}.3H^{-}.$ Similar studies on related systems are under way on HRPT (SINQ).

Directional metal-hydrogen bonding was found in the metallic ErNi₃-H and LaNi₃B-H systems (HRPT). As shown in Fig. 1 hydrogen in β_1 -ErNi₃H_x occupies two sites in the AB₂-type building block. One (D1) corresponds to

three ligands of a Ni centered NiH₄ tetrahedron, and the other (D2) bridges a Ni triangle. In γ -ErNi₃H_x D2 becomes nearly empty while four other D sites become occupied. One (D4) completes the fourth ligand of the NiH₄ tetrahedron, and three (D3,D5,D6) are located in the AB₅ building block. The formation of tetrahedral NiH₄ units suggests directional bonding effects and a possible metalsemiconductor transition such as in LaMg₂NiH₇.

The structure and dynamics of [BH4] complexes in covalent alkali borohydrides MBH₄ (M=Na,K,Rb,Cs) have been investigated by diffraction (DMC) and IR spectroscopy (Dr. Hagemann, University of Geneva) on deuterides. As shown in figure 2 the frequency of the stretching mode, $v(A_{1g})^{-2/3}$, for the [BD₄]⁻ units scales with the B-D distances.

Figure 2 : Frequency of stretching mode $v(A_{1g})^{-2/3}$ versus B-D bond distances of [BD₄]⁻ units in MBD₄ (M=Na,K,Rb,Cs)

In the ionic hydrides RH₃ (R=rare-earth) atom relaxations around hydrogen vacancies were studied experimentally (HRPT) and theoretically (P. Herzig, University of Vienna). Ab-initio calculations by VASP on nearly stoichiometric LaH₃ (La₃₂H₉₅) confirm energetically favored atom relaxations around empty hydrogen sites. The metal octahedra around empty octahedral sites tend to expand (by ~ 0.02 Å), while the hydrogen atoms on tetrahedral sites shift by up to ~0.10 Å towards the faces of empty metal octahedra. These findings are of interest for the study of metal-insulator transitions in these systems.

The work has so far lead to a dozen publications. For downloadable reprints and preprints see http://www.unige.ch/sciences/crystal/yvonk/pub.html

> Work partially performed at SINQ Proposal-number: I/03-L16 Instruments: DMC, HRPT