

Structural Heterogeneity in Twinned Yb_{2-x}(Fe,Ga)_{17+2x} Polytypes

Y. Filinchuk¹, H. Birkedal^{2, 3}, R. Cernv¹, M. Hostettler², O. Bodak⁴, K. Yvon¹

Institut de Cristallographie

¹ Laboratoire de Cristallographie, Universite de Genève, quai Ernest-Ansermet 24, CH-1211 Genève, Switzerland 2 Institut de Cristallographie, Universite de Lausanne, BSP-Dorigny, CH-1015 Lausanne, Switzerland Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA Ivan Franko National University of L'viv, 79005 L'viv, Kyryla&Mefodia 6, Ukraine

Sample preparation

The alloy was prepared by arc-melting at the nominal composition $Yb_{12}Fe_{64}Ga$

The ferromagnetic title compounds are substitution derivatives of R.Fe., (R = Rare earth) in which <u>R and Fe atoms are partially substituted by</u> Fe, dumbbells and Al(Ga) atoms, respectively.

According to previous work they crystallize with the hexagonal LuFe_{9.5} type (1, P6₃/mmc) and/or rhombohedral PrFe₇ type (2, R-3m) structure. 1 and 2 (ABABAB and ABCABCABC stacking sequences) can be considered as polytypes with maximum degree of order (MDO polytypes).

They have the cell parameter relationships a(I) = a(II) and 3c(1) = 2c(2).

Structure

In this work we show that both polytypes can occur within a coherently twinned crystal

Crystals of the cast sample showed peculiar non-space group absences and cell metrics a(1) = a(2) = 8.615 A and 3c(1) = 2c(2) = 25.215 A investigations Diffraction patterns: image plate detector, synchrotron radiation Modelled by superposing three sorts of domains: one hexagonal (1) and two rhombohedral (2, 3 - twinned by reticular merohedry). Given the absence of a significant diffuse scattering intensity

interference terms arising from possible stacking-faults were neglected

Structure refinement was performed by a newly developed computer program [1] that allows to refine several structures on a single data set.

Results

1 and 2(3) displayed different chemical compositions: 1 showed a higher rate of Yb substitution by Fe2 dumbbells than 2(3), and 2(3) showed partial substitution of Fe by Ga.

Nano-scale chemically heterogeneous domains of the same crystal were structurally characterized for the first time

Diffuse intensity

(110) direct space section

its amount in the streaks along c^* enabled us to find out the average domain size along c: evaluated qualitatively at the level of a few tens of unit cell dimensions

Related topics

1. What is a real TbCu₇ structure? Isn't it a highly disordered stacking of the layers that have a strong tendency to ordering in the basal plane?

2. D.S. Yufit et al. (2002). Acta Cryst., B58, 673-676 - two polytypes of organic substance in a coherently twinned crystal 3. H. Katzke. (2002). Z. Kristallogr., 217, 127-130 - variations of peak profiles for 2H&3R twinned polytypes of NbS

4. D.L. Smith et al. (1981). Acta Cryst., B37, 1807-1812 - 2H&3R coherently twinned polytypes of CuNCS were refined

[1] H. Birkedal, M. Hostettler, W. Paciorek, D. Schwarzenbach, Bulletin of the Czech and Slovak Crystallographic Association. Special issue B, ECM-18 posters - abstracts. 5 (1998), 200 (Abstract A4-P17)

Data acquisition: ESRF (SNBL) $\lambda = 0.55091$ Å; crystal selected from a Yb ₁₂ Fe ₆₄ Ga ₂₄ bulk								
	the whole conglomerate		domain type 1		domain type 2		domain type 3	
crystal class			hexagonal		rhombohedral		rhombohedral	
space group			$P6_3/mmc$		$R \overline{3}m$		$R \overline{3}m$	
$a (a_s = 8.615 \text{ Å})$	a_s		as		a_s		a_s	
$c (c_s = 25.215 \text{ Å})$	C_{S}		<i>c</i> _s /3		<i>c</i> _s /2		$c_s/2$	
refined composition			$Yb_{3.46(2)}Fe_{35.07(4)}$		$Yb_{5.006(2)}Fe_{50.44(2)}Ga_{1.878(13)}$			
no. of parameters	41		18		20			
volume fraction			0.320(4)		0.340(3)		0.340(3)	
group of reflections	all	common	all	own	all	own	all	own
$R_1(F_0^2 > 3s(F_0^2))$	0.0644	0.0551	0.0635	0.0839	0.0597	0.0660	0.0591	0.0646
$wR_2(all)$	0.1857	0.1553	0.2102	0.2700	0.1625	0.1679	0.1626	0.1680
Goof(all)	1.0084							