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Figure 1. Structural comparison of the M(BH4)2 series’ members, 
M (in blue) = Mg and Ca: 3-d framework; Be: 1-d polymer. 
Coordination of Mg5 is shown for Mg(BH4)2.
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Figure 2. Raman spectra of Mg(BH(D)4)2 (in red) and
LiBH(D)4 (in blue). Upper curves: deuteride, lower 
curves: hydride. The asterisk indicates a band resulting 
from residual diethyl-ether.

Figure 5. Structure of Mg(BH4)2 viewed along the hexagonal b axis, showing two 
unit cells. Red (partially transparent) tetrahedra are BH4- units; Mg atoms in blue.
Considering the cations as A and the tetrahedral anions as B, the resulting three-
dimensional framework, in which each tetrahedron AB4 shares all of its vertices with 
another tetrahedron, resembles the frameworks of oxides and aluminosilicates, 
which generally display nearly linear A-B-A fragments.

Figure 6. Considering the cations (A) only, the 
Mg2+ network (Mg···Mg > 4.6 Å) resembles an 
amorphous state on a local level. Four-connected 
Mg nodes are shown. 

Figure 3. Observed (red), calculated (black) and difference (bottom)
synchrotron powder diffraction patterns for Mg(BD4)2, λ = 0.40008 Å. 
The Bragg positions for individual phases are shown with ticks. 
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Figure 4. Observed (red), calculated (black) and difference (bottom)
neutron powder diffraction patterns for Mg(BD4)2, λ = 1.8857 Å. 
The Bragg positions for individual phases are shown with ticks. 
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υ1 + υ3
B-H(D) stretching
+Fermi resonance

1730
1705
1603

2321sh
2275
2301

2334sh 
2283sh
2308vs

1733 
1716 
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1654
1606

υ2 + υ4 989
856
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1388
1310
1288
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1126w
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1039w

946 
924
830
802
775

Lattice modes 673
366
245

285
255
189

670
248
204
195
172

Table 1. Observed Raman shifts (in cm-1) for lithium and
magnesium borohydride at room temperature (see Figure 2) 
vs = very strong, sh = shoulder, w = weak.

Synthesis: 

Commercial LiBH4 or LiBD4 (2 g, 91.8 mmol; and anhydrous MgCl2 (4 g, 42 
mmol) were introduced into a 500-ml flask containing dry diethyl ether (300 ml). 
The mixture was heated under reflux for 3 days in a nitrogen atmosphere, and 
ether was repeatedly added to compensate for evaporation losses. The reaction 
mixture was allowed to cool for 1 h. Then the liquid phase was removed using a 
syringe equipped with a small filter and collected in a new flask. The ether was 
removed under vacuum (10-2–10-3 mbar, liquid-nitrogen trap) at room 
temperature, leaving a white paste of solvated Mg(BH4)2 or Mg(BD4)2 and other 
compounds. 

Upon careful drying under vacuum at increasing temperatures (50, 70, 90, 110, 
130, and 145°C) over 3 or 10 days (in two different experiments), a dry solid
was obtained. X-ray analysis revealed the presence of some LiCl, Li2MgCl4, and 
LiBH4 or LiBD4, in addition to the main phase Mg(BH4)2 or Mg(BD4)2 (yield ca. 
30%). Above 150° C, the sample started to decompose. 

For samples heated to only 120° C, ether was detected in the Raman spectrum; 
these samples were not sufficiently well-crystallized for high-resolution 
diffraction studies.

Raman spectra:

In the BH stretching region (around 2300 cm-1), the spectra of Mg(BH4)2 and 
LiBH4 are similar, while those of the corresponding deuterides are more 
complex.

In the bending region (1000-1400 cm-1), the spectra of the hydrides and the 
deuterides show significant differences. 

By correlating the BD stretching frequency with the BD bond length, as was 
done for the cubic alkali-metal borohydrides [3], a frequency of 1605 cm-1

suggests a bond length of 1.17 Å.

Synchrotron X-ray and neutron diffraction: 

A powder synchrotron X-ray diffraction (S) pattern for Mg(BD4)2 was 
measured over 24 h at room temperature using synchrotron radiation 
(λ=0.400080(1) Å) at the Swiss–Norwegian Beam Line BM1B of the ESRF 
(Grenoble). 

A powder neutron diffraction (N) pattern was measured for the same sample 
at 100°C using neutron radiation (λ=1.8857 Å) on the HRPT at the Swiss 
Spallation Source (SINQ) of the PSI (Villigen). 

The S data were indexed in a hexagonal cell by using Dicvol96. The 
structure was solved jointly from the S and N data by direct-space methods 
(program FOX [4]) in space group P61. 

Five magnesium atoms and ten BD4 groups were refined jointly on the S and 
N data by using TOPAS Academic [5]. The BD4 tetrahedra were kept as 
semirigid bodies with ideal tetrahedral bond angles and a common refined 
BD distance. 

In the final cycle, 186 parameters were refined, yielding the agreement 
factors of Rwp=0.048, RBragg(main phase)=0.034, and χ2 =16 for the S data, 
and of Rwp=0.018, RBragg(main phase)=0.008, and χ2 =7.45 for the N data.

Nine S patterns were collected over the temperature range 100–200°C to 
check for the phase transition reported in reference [6]. A transition to a HT 
phase was indeed observed at approximately 180°C. The HT phase is 
possibly unstable above this temperature. Its diffraction peaks were not 
consistent with a hypothetical cubic Cu2O-type metal substructure nor with a 
face-centered cubic structure (a ~ 15.5 Å) as reported in reference [6].

Mg(BD4)2 at 20°C:  
P61, a = 10.3182(1), c = 36.9983(5) Å, V = 3411.3(1) Å3

Five symmetry independent Mg2+ ions and ten symmetry-independent 
[BD4]- ions. The Mg2+ and [BD4]- ions are connected into a novel three-
dimensional framework. All Mg2+ cations have similar atomic 
environments.

BD4 tetrahedra as semirigid bodies with ideal tetrahedral bond angles 
and a common refined BD distance of 1.18(1) Å.

Each Mg2+ ion is surrounded by four [BD4] tetrahedra arranged in a 
deformed tetrahedron (Mg-B 2.31(3)–2.53(2) Å; B-Mg-B 83(2)–131(2) 
deg). Each [BD4] - ion is approximately linearly coordinated by two Mg2+

ions (Mg-B-Mg 148(1)–177(2)deg). 

The orientation of the [BD4] tetrahedra is such that each Mg2+ ion is 
coordinated by tetrahedral edges only (μ2-D2 bridges), resulting in an 
unusual eightfold, relatively irregular hydrogen coordination 
environment.

Mg-D distances in the range of 1.81(4)–2.25(5) Å, with the exception of 
one longer distance of 2.46(8) Å.

The increase of the hydrogen coordination number from six (for Be2+) 
to eight (for Mg2+) and twelve (for Ca2+) suggests that cation size is one 
of the reasons that Mg(BD4)2 does not adopt one of the simpler 
structures of its alkaline-earth analogues.

The structure of Mg(BD4)2 differs from those of its beryllium and 
calcium analogues, as well as from those predicted by theory [1,2]. 

The structure is one of the most complex atom arrangements solved 
from powder diffraction data so far.

[1]  P. Vajeeston, P. Ravindran, A. Kjekshus, H. Fjellvåg, Appl. Phys. Lett. 2006, 89, 071906
[2]  Y. Nakamori, K. Miwa, A. Ninomiya, H. Li, N. Ohba, S. Towata, A. Züttel, S. Orimo, Phys. Rev. B 2006, 74, 045126
[3]  G. Renaudin, S. Gomes, H. Hagemann, L. Keller, K. Yvon, J. Alloys Compd. 2004, 375, 98 – 106
[4]  V. Favre-Nicolin, R. Cerny, J. Appl. Crystallogr. 2002, 35, 734 –743, http://objcryst.sourceforge.net/Fox
[5]  A. A. Coelho, TOPAS-Academic, http://members.optusnet.com.au/alancoelho, 2004
[6]  V. N. Konoplev, V. M. Bakulina, Russ. Chem. Bull. 1971, 20, 136 –138


