Synthesis and thermal decomposition of potassium tetraamidoboranealuminate, K[Al(NH₂BH₃)₄]

Kasper T. Møller a, Mathias Jørgensen a, Jacob G. Andreasen a, Jørgen Skibsted a, Zbigniew Łodziana b, Yaroslav Filinchuk c, Torben R. Jensen a,*

a Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, University of Aarhus, DK-8000 Aarhus, Denmark
b Department of Structural Research, INP Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakow, Poland
c Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium

Article info
Article history:
Received 25 August 2017
Received in revised form 9 November 2017
Accepted 10 November 2017
Available online 6 December 2017

Keywords:
Hydrogen storage
Metal amidoboranes
Potassium alanate
Ammonia borane
Potassium tetraamidoboranealuminate

Abstract
A new potassium tetraamidoboranealuminate, K[Al(NH₂BH₃)₄], has been synthesized by a mechanochemical reaction between KAlH₄ and NH₃BH₃. The compound, K[Al(NH₂BH₃)₄], crystallizes in a triclinic unit cell with space group symmetry P–1. The crystal structure consists of [K(NH₂BH₃)₆]₅ octahedra which facilitate the bridging between K⁺ in 1D chains, while also bridging K⁺ to Al³⁺ to connect the 1D chains in a 3D network. Thermal analysis reveals that K[Al(NH₂BH₃)₄] decomposes in two exothermic steps at T ~ 94 and 138 °C and releases primarily hydrogen. The total gas release amounts to ~6.0 wt% H₂. The decomposition products are investigated ex situ by powder X-ray diffraction, infrared spectroscopy, and ¹¹B and ⁷⁷Al NMR and identified as KBH₄ and amorphous phases, possibly BN₃, N₂BH, and/or NBH₂ whereas aluminum is found in four-, five-, and six-fold coordination. Unfortunately, the decomposed sample shows no hydrogen absorption at T = 260 °C and p(H₂) = 110 bar.

© 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction
Hydrogen has a great potential as an energy carrier [1–6]. Thus, research within hydrogen storage materials has primarily focused on the discovery of possible successors for liquid fuels, diesel and gasoline, appropriate for mobile applications [7–11]. Initially, aluminum-based hydrides attracted significant attention as the reversible system NaAlH₄–TiCl₃ was discovered [12]. However, KAlH₄ has the advantage over NaAlH₄ that no additives are needed to promote the reversible hydrogen release and uptake at low pressures (<10 bar) and moderate temperatures (250–300 °C) [13]. Yet, the detailed decomposition mechanism of KAlH₄ is
still debated and the possible intermediates remain not fully characterized [14,15]. Additionally, the reversibility conditions for KAlH₄ are too harsh for mobile applications, hence optimization of KAlH₄ is required if utilization is to be realized.

Nitrogen-boron containing compounds have also been extensively studied [16–19]. A compound which has received great attention is ammonia borane, NH₃BH₃, owing to its high gravimetric hydrogen density, ρₘₘ = 19.6 wt% H₂ [20–23]. However, for mobile applications, NH₃BH₃ has several drawbacks. The decomposition occurs in two steps below 200 °C, with release of toxic gasses, e.g. ammonia (NH₃), diborane (B₂H₆) and borazine (N₃B₃H₃) whilst the first decomposition step is exothermic (ΔH = −21.7 kJ/mol H₂) and hence irreversible [20,24–26]. Many attempts have been made to improve these properties, especially through metal amido-boranes, which often have high gravimetric hydrogen densities, fast kinetics, and low decomposition temperatures, whereas the purity of hydrogen released is improved [16,27–32]. Moreover, metal borohydride--ammonia borane complexes, [M(BH₄)₃(NH₃BH₃)]ₓ (M = Li, Mg, Ca), have been reported, however, they maintain the drawbacks of molecular NH₃BH₃ [33–36]. Finally, complexes combining aluminum, boron, and nitrogen have received increasing interest [37]. Especially, the combination of an aluminum atom bonded to multiple NH₃BH₃ residues may enable reversibility by combining the efficiency of NH₃BH₃ dehydrogenation with an aluminum-mediated hydrogenation process [38,39].

Recently, the first aluminum-based amidoborane, Na[Al(NH₂BH₃)₄], was reported and found to decompose in two steps at 120 and 160 °C into NaBH₄ and amorphous products [40,41]. Interestingly, a partial reversibility of 1.7 mol H₂ was found between the two amorphous decomposition states [40]. Additionally, a few potassium-containing amidoboranes have been reported, e.g. KNH₂BH₃ and KNH[(Bu)BH₃]₂ [28,30]. KNH₂BH₃ melts before an exothermic decomposition occurs at 80 °C and continues in two steps below 225 °C into an amorphous product which according to solid-state ¹¹B MAS NMR contains a branched polyiminoborane [30,42].

In this work, K[Al(NH₂BH₃)₄] has been synthesized by mechanochemical treatment of KAlH₄ and NH₃BH₃. The new potassium-based amidoborane compound has been characterized by in-situ synchrotron radiation powder X-ray diffraction (SR-PXD), density functional theory (DFT), thermogravimetric analysis combined with differential scanning calorimetry and simultaneous mass spectrometry (TG-DSC-MS), temperature programmed photographic analysis (TPPA), Sieverts’ method (PCT), and solid-state ¹¹B and ²⁷Al magic-angle spinning (MAS) NMR.

Experimental

Sample preparation

KH (Sigma–Aldrich, 30 wt% dispersed in mineral oil) was initially dried under vacuum and washed three times with diethyl ether. Subsequently, Al (Strem Chemicals, 99.7%) and KH in a 1:1 molar ratio were loaded into a 80 ml tungsten carbide (WC) vial with WC balls (d. ø 10 mm) in a ball-to-powder mass ratio of 30:1 and ball milled for 48 cycles consisting of 10 min milling and a 2 min break, giving a total of 8 h milling, using a Fritsch Pulverisette 6 planetary mill.

Finally, the ball-milled mixture was hydrogenated at p(H₂) = 120 bar and T = 270 °C for 12 h providing the product potassium alanate, KAlH₄. KAlH₄ was then mixed with ammonia borane, NH₃BH₃ (Sigma–Aldrich, 97%), in the molar ratio 1:4 and ball milled in cycles consisting of 5 min milling and 2 min break with a ball-to-powder mass ratio of 30:1. Three samples were made using 96, 120, and 144 cycles giving a total milling time of 8, 10, and 12 h, respectively. The samples are denoted S1, S2, and S3, respectively.

Synchrotron radiation powder X-ray diffraction

High resolution, in-situ time-resolved SR-PXD data, used for crystal structure solution and refinement, were collected at beamline I11 at the Diamond Light source, Oxford, UK on a wide-angle position sensitive detector (PSD) based on Mythen-2 Si strip modules, λ = 0.8259 Å. The powdered sample was packed in quartz capillaries (i.d. 0.5 mm, wall thickness 0.01 mm) in an argon-filled glovebox (p(O₂), H₂O < 1 ppm). Subsequently, the sample was heated from RT to 500 °C (∆T/∆t = 5 °C min⁻¹), while rotated during data acquisition. The temperature was calibrated using a NaCl standard [43]. The in-situ SR-PXD data plot has been background subtracted to clearly show the Bragg reflections.

Structure solution and refinement

The in-situ SR-PXD data (sample S3) were indexed using the DICVOL routine implemented in the software FOX [44], which revealed a triclinic unit cell. Subsequently, the structure was solved by global optimization in direct space, also using FOX. Structural models were created with one potassium atom, one aluminum atom, and four [NH₃BH₃]⁻ groups treated as rigid bodies with N–B, N–H, and B–H distances of 1.589, 1.029, and 1.226 Å, respectively, and a number of antibump restraints to assist the convergence. The structure of K[Al(NH₃BH₃)]₄ was solved in space group P–1 and the structural model was refined using the Rietveld approach implemented in the software Fullprof [45].

Density functional theory

The initial, Rietveld-refined structure of K[Al(NH₃BH₃)]₄ was optimized with the conjugated gradient (CG) method with respect to the internal atomic positions. This procedure provided equilibrium hydrogen sites. As the second step, the unit cell shape was optimized. These optimized structures were subject to simulated annealing. No constraints were imposed on the internal atomic positions and the unit cell parameters were kept fixed for this procedure. The symmetry of the final structures was analyzed, and systems with imposed symmetry were re-optimized with the CG method. The electronic configurations of for H (1s⁰), B (2s²2p⁶), N (2s²2p⁶), K (3p⁶4s⁶), and Al (3s³3p⁵) were represented by projected augmented wave potentials [46]. The gradient-corrected (GGA) functional and the corrections for a weak dispersive interaction were applied [47,48]. The plane wave formulation of the DFT method implemented in Vienna Simulation Package (VASP) was used [49].
The NMR parameters were calculated within the gauge-including projector augmented waves (GIPAW) approach [50,51]. PAW pseudopotentials were used and the geometry of the system was fixed. The isotropic shielding of BPO$_4$ at −3.60 ppm was used as the reference for 11B [52], and for 27Al: 16.0 ppm of α-Al$_2$O$_3$ [53]. The quadrupolar coupling constant (C_Q) and the asymmetry parameter (η_0) have been determined from the traceless electric field gradient (EFG), further details can be found elsewhere [54]. The nuclear quadrupole moments of 40.59 mb and 146.6 mb were used for the 11B and 27Al, respectively.

Thermal analysis

Thermogravimetric analysis and differential scanning calorimetry (TGA-DSC) of KAlH$_4$ and KAlH$_4$–NH$_2$BH$_3$ (1:4, S3) were performed on a PerkinElmer STA 6000 apparatus. The samples (approx. 4 mg) were placed in Al$_2$O$_3$ crucibles under protective argon atmosphere in a glovebox and heated from 40 to 300 °C ($\Delta T/\Delta t = 5$ °C min$^{-1}$) in an argon flow of 40 mL min$^{-1}$. Additionally, mass spectrometry data were simultaneously collected for H$_2$, B$_2$H$_6$, B$_3$H$_6$N$_3$ (m/z = 80), and NH$_3$ using a Hiden Analytical HPR-20 QMS sampling system.

Sieverts’ measurement

The KAlH$_4$–NH$_2$BH$_3$ (1:4, S3) sample was transferred to a stainless steel high-temperature autoclave and connected to a custom-made Sieverts’ apparatus [55]. Decomposition of the sample was performed by heating to $T = 200$ °C ($\Delta T/\Delta t = 3$ °C min$^{-1}$) for 1 h. Finally, the sample was cooled naturally to RT. Absorption was performed by heating the sample to $T = 260$ °C ($\Delta T/\Delta t = 5$ °C min$^{-1}$) at p(H$_2$) = 110 bar for 15 h. Subsequently, the sample was decomposed as described above.

Solid-state 11B and 27Al MAS NMR spectroscopy

The solid-state 11B and 27Al MAS NMR spectra were obtained on a Varian Direct-Drive VNMR-600 spectrometer (14.1 T) using a custom-made CP/MAS NMR probe for 4 mm outer diameter rotors. The spectra employed a 0.5 μs excitation pulse for rf field strengths of γB$_0$/2π = 58 kHz (11B) or γB$_0$/2π = 70 kHz (27Al), relaxation delays of 4 s, 30 s (11B) or 4 s (27Al) and 1H decoupling (TPPM, γB$_0$/2π = 42 kHz). The experiments were performed at ambient temperature using airtight end-capped zirconia rotors packed with the samples in an argon-filled glovebox. Isotropic 11B and 27Al chemical shifts are relative to neat F$_2$B–O(CH$_2$CH$_3$)$_2$ and an aqueous 1.0 M AlCl$_3$·6H$_2$O solution, respectively. Simulations and least-squares optimizations to the manifold of spinning sidebands, observed for the 11B and 27Al satellite transitions, were performed using the STARS simulation software [56].

Fourier-transformed infrared spectroscopy

The sample KAlH$_4$–NH$_2$BH$_3$ (1:4, S3) was characterized by infrared absorption spectroscopy using a NICOLE T 380 FT-IR instrument from Thermo Electron Corporation. The sample was briefly exposed to air (~10 s) during transfer to the instrument.

Temperature-programmed photographic analysis

Two pellets of S1 and S3 (~10 mg) were pressed and sealed under argon in a glass tube and placed in a custom-made aluminum heating block [57]. The samples were heated from RT* to 200 °C ($\Delta T/\Delta t = 5$ °C min$^{-1}$) while photos of the sample were collected every six seconds.

Results

Initial sample analysis

Mechanochemical treatment of the reactants, KAlH$_4$–NH$_2$BH$_3$ (1:4), results in the appearance of a new set of Bragg reflections in the PXD pattern for all three samples, which was indexed in a triclinic unit cell: $a = 9.7151(3)$ Å, $b = 7.8221(3)$ Å, $c = 7.8750(3)$ Å, $\alpha = 95.358(3)^\circ$, $\beta = 109.944(3)^\circ$, and $\gamma = 89.629(3)^\circ$. $V = 559.74(4)$ Å3, and $Z = 2$. This diffraction data originates from a new compound, K[Al(NH$_2$BH$_3$)$_4$], formed by the chemical reaction (1):

$$\text{KAlH}_4 (s) + 4\text{NH}_2\text{BH}_3 (s) \rightarrow \text{K[Al(NH}_2\text{BH}_3)_4] (s) + 4\text{H}_2 (g) \quad (1)$$

Rietveld refinement of the diffraction data of S1 reveals a sample composition of K[Al(NH$_2$BH$_3$)$_4$] (~67 wt%), KAlH$_4$ (~12 wt%), and NH$_2$BH$_3$ (~21 wt%). To enhance the formation of the new K[Al(NH$_2$BH$_3$)$_4$] compound the ball-milling time was extended. Sample S2 contains a major fraction of K[Al(NH$_2$BH$_3$)$_4$] (~91 wt%) whereas only minor fractions of the reactants, KAlH$_4$ (~1.7 wt%) and NH$_2$BH$_3$ (~0.10 wt%) are present. However, Bragg reflections belonging to KBH$_4$ are now appearing and the amount was determined to be ~7.5 wt%. Longer ball-milling time, S3, results in additional formation of KBH$_4$ (~26 wt%), thus the K[Al(NH$_2$BH$_3$)$_4$] decomposes under extensive ball milling (see later section on decomposition products). Furthermore, S3 contains K[Al(NH$_2$BH$_3$)$_4$] (~67 wt%), NH$_2$BH$_3$ (~3.6 wt%), and KAlH$_4$ (~3.1 wt%), see also Table 1 for an overview of the approximate sample composition. However, the structural solution was carried out on in-situ SR-PXD data collected for S3 and the Rietveld refinement on the SR-PXD data is seen in Fig. 1. The quartz capillary contributes significantly to the background at low 2θ values.

For all three samples, the observed Bragg reflections can be assigned to either the reactants, KAlH$_4$ or NH$_2$BH$_3$, the reaction product, K[Al(NH$_2$BH$_3$)$_4$], or the decomposition product, KBH$_4$. The contrast between the presence of NH$_2$BH$_3$ in S1 and KBH$_4$ in S3 is further evident from TPPA in which the foaming of NH$_2$BH$_3$ is clearly observed in S1 whereas only a minor volume change is observed for S3 due to the gas release following decomposition (see Figs. S1 and S2).

Structural analysis

The Rietveld refined structure was optimized using DFT owing to multiple options for hydrogen positions. Three
Table 1 – Overview of sample compositions determined by Rietveld refinement of the SR-PXD data.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Compound</th>
<th>K[Al(NH2BH3)4] (wt%)</th>
<th>NH3BH3 (wt%)</th>
<th>KAlH4 (wt%)</th>
<th>KBH4 (wt%)</th>
<th>Milling time [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td></td>
<td>67</td>
<td>21</td>
<td>12</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td>91</td>
<td>0.1</td>
<td>1.7</td>
<td>7.5</td>
<td>10</td>
</tr>
<tr>
<td>S3</td>
<td></td>
<td>67</td>
<td>3.6</td>
<td>3.1</td>
<td>26</td>
<td>12</td>
</tr>
</tbody>
</table>

Fig. 1 – Rietveld refinement of the SR-PXD diffractogram of KAlH4–NH3BH3 (1:4, S3, RT) containing K[Al(NH2BH3)4] (upper green marker), NH3BH3 (second green marker), KAlH4 (third green marker), and KBH4 (lower green marker) (λ = 0.8259 Å). Observed data (Yobs, red curve), Rietveld refinement profile (Ycalc, black curve), and difference plot (Yobs – Ycalc, blue curve). Agreement factors, corrected for background, are χ² = 2.64, Rexp = 14.1%, Rappr = 22.9%, and Rp = 40.0%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

In-situ synchrotron radiation powder X-ray diffraction

In-situ SR-PXD data of KAlH4–NH3BH3 (1:4, S3) are presented in Fig. 3. Initially, diffraction from the new compound K[Al(NH2BH3)4], the reactants KAlH4 and NH3BH3, and the decomposition product, KBH4, are present. Only the most intense Bragg reflection from NH3BH3 is visible in the data and it disappears at T = 75 °C, which is low compared to the reported decomposition temperature at 110–120 °C [25,59]. However, no change in the diffracted intensity of the other compounds is observed, hence no reaction appears to occur. The diffracted intensity of K[Al(NH2BH3)4] is reduced at T = 95 °C and disappears completely at T = 105 °C, apparently in a single-step decomposition reaction, which does not produce crystalline products. In this case, there is no observable change in intensity of KBH4 after decomposition of K[Al(NH2BH3)4], though at T > 115 °C there is a significant, almost threefold, increase in the full width at half maximum (FWHM) from 0.0738° at T = 115 °C to 0.2008° at T = 170 °C, which may be due to a reduction in particle size. However, in-situ SR-PXD data of KAlH4–NH3BH3 (1:4, S1) ball milled for only 8 h, shown in Fig. S3, clearly show an increase in diffracted intensity of KBH4 after decomposition of K[Al(NH2BH3)4]. Weak Bragg reflections from KAlH4 are observed during the
Fig. 2 - The crystal structure of K[Al(NH2BH3)4]. (a) Coordination of the [Al(NH2BH3)4]− complex. Color scheme: K, dark blue; Al, red; N, light blue; B, dark yellow. (b) The K+ ions are organized as chains in the structure, illustrated as green dashed lines) and the linkage between these chains through the [Al(NH2BH3)4]− complex (purple, dotted line). For simplicity, this is only shown in one case and hydrogen atoms have been omitted. Hence, the three chains shown are connected by the [Al(NH2BH3)4]− complexes marked as light red tetrahedra. (c) The unit cell of K[Al(NH2BH3)4] highlighting the coordination between K+ and the BH3 group via edge and corner interactions of hydrogen (purple, dotted lines). Additionally, a di-hydrogen bond is emphasized (orange, dotted line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3 - In-situ SR-PXD data of KAlH4–NH3BH3 (1:4, S3) measured in the temperature range RT to 270 °C (ΔT/Δt = 6 °C min⁻¹, λ = 0.8259 Å). Symbols: K[Al(NH2BH3)4] black circle; NH3BH3 blue square; KAlH4 purple triangle; KBH4 orange diamonds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4 - (a) 11B MAS NMR spectrum (14.1 T) of the central and satellite transitions for K[Al(NH2BH3)4] (sample S2), obtained with a spinning frequency of vR = 13.0 kHz and a 4-s relaxation delay. The inset illustrates the resonances from the central transitions. (b) Optimized simulation of the ssbs from the satellite transitions in (a), employing the 11B parameters in Table 3 and a deviation from the magic angle of Δθ = 0.0365°.
entire in-situ SR-PXD experiment as decomposition does not occur before $T > 300 \, ^\circ C$ [14].

11B and 27Al MAS NMR

11B and 27Al MAS NMR spectra of the central and satellite transitions for K[Al(NH2BH3)4] (sample S2) are shown in Figs. 4 and 5, respectively. The 11B MAS NMR spectrum is dominated by the central transition at $22.3 \, \text{ppm}$, and the associated spinning sidebands (ssbs) from the satellite transitions, which is assigned to the 11B sites in the K[Al(NH2BH3)4] structure. This 11B chemical shift is in agreement with a recent solution-state 11B NMR study of K[Al(NH2BH3)4] [60]. In addition, minor centerband resonances at $6.3 \, \text{ppm}$, $12.9 \, \text{ppm}$, and $37.8 \, \text{ppm}$ are observed. The latter peak originates from KBH4, according to the 11B chemical shift of $37.8 \pm 0.2 \, \text{ppm}$ reported for this compound [61], which constitutes 9.9% of the 11B intensity in the spectrum. The peaks with lower intensity at $-6.3 \, \text{ppm}$ and $-12.9 \, \text{ppm}$ can be assigned to [N2BH] and [N3BH] species, respectively, according to a recent 11B MAS NMR study of lithium and potassium amidoboranes [42].

Least-squares optimization of simulated to experimental ssb intensities for the 11B satellite transitions results in the 11B isotropic chemical shift and quadrupole coupling parameters listed in Table 3 and the optimized simulation shown in Fig. 4b. The δ_{iso} and C_Q values for 11B in K[Al(NH2BH3)4] are very similar to those reported for the two ammonia borane sites in Mg(BH4)2(NH3BH3)2 [35], where the isotropic chemical shift reflects the tetrahedral coordination of boron to three H and one N atom. However, only a single centerband resonance and ssb manifold are observed, despite the crystal structure

![Fig. 5 - (a) 27Al MAS NMR spectrum (14.1 T) of the central and satellite transitions for K[Al(NH2BH3)4] (sample S2), obtained with a spinning frequency of $\nu_R = 12.0 \, \text{kHz}$ and a 4-s relaxation delay. The inset illustrates the spectra region for the central transitions. (b) Optimized simulation of the ssbs from the satellite transitions in (a), corresponding to the 27Al parameters in Table 3.](image)

![Fig. 6 - (a) 11B and (b) 27Al MAS NMR spectra (14.1 T) showing the central transition region for the decomposed sample of K[Al(NH2BH3)4]. The 11B spectrum is acquired with a spinning speed of $\nu_R = 12.0 \, \text{kHz}$ and a relaxation delay of 30 s, whereas the 27Al NMR spectrum, employed $\nu_R = 13.0 \, \text{kHz}$ and a 4-s relaxation delay. Asterisks indicate spinning sidebands.](image)

<table>
<thead>
<tr>
<th>δ_{iso} (ppm)</th>
<th>C_Q (MHz)</th>
<th>η_Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>11B</td>
<td>1.26 ± 0.04</td>
<td>0.12 ± 0.02</td>
</tr>
<tr>
<td>B1</td>
<td>(1.41)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>B2</td>
<td>(1.51)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>B3</td>
<td>(1.56)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>B4</td>
<td>(1.48)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>27Al</td>
<td>2.41 ± 0.04</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td>(110.7)</td>
<td>(1.83)</td>
<td>(0.21)</td>
</tr>
</tbody>
</table>

* The numbers in brackets are calculated values from DFT calculations of the optimized structure.

** Quadrupole coupling constant, $C_Q = \kappa QV_{zz}/h$, where κ is the charge of the electron, Q the nuclear quadrupole moment, h Planck’s constant, and V_{zz} the principal element of the electric-field gradient tensor at the nuclear site, $|V_{xx}| \geq |V_{yy}| \geq |V_{zz}|$.

* Quadruple asymmetry parameter, $\eta_Q = (V_{yy} - V_{xx})/V_{zz}$.

![Table 3 - Experimental and calculated 11B and 27Al isotropic chemical shifts (δ_{iso}) and quadrupole coupling parameters (C_Q, η_Q) for K[Al(NH2BH3)4].](image)
The absence of four resolved sites in the 11B MAS NMR spectrum (Fig. 4a) may reflect dynamics in the structure and/or nearly identical chemical environments of the four sites, as reflected in the very similar δ_{iso}, C_Q and η_Q values calculated by DFT for the four sites (Table 3). In this context, we note that the calculated 11B chemical shifts vary by only 1.6 ppm and are very close to the experimental values and that this similarity also holds for the C_Q and η_Q parameters.

The 27Al central transition from KAlH$_4$ should be observed at 106 ppm [62], however, a close inspection of the line shape for the 109 ppm resonance from K[Al(NH$_2$BH$_3$)$_4$] gives no indications of such a peak, thereby showing that the amount of KAlH$_4$ in the S$_2$ sample must be very small, if present at all, which is in good agreement with the Rietveld refinement (Table 1), see Fig. 5a. Least-squares fitting to the intensities of the manifold of ssb's gives the δ_{iso}, C_Q and η_Q parameters for the unique Al site in K[Al(NH$_2$BH$_3$)$_4$] along with the simulated spectrum in Fig. 5b, which convincingly reproduces the experimental manifold of ssb's from the satellite transitions. Furthermore, the DFT calculated isotropic chemical shift (Table 3) agrees very well the experimental value and the calculated C_Q and η_Q values are of the same magnitude as those determined experimentally.

The 11B MAS NMR spectrum of the decomposed K[Al(NH$_2$BH$_3$)$_4$] sample, Fig. 6a, reveals a broad resonance at 26 ppm in addition to the narrow resonance at -37.8 ppm from KBH$_4$. The featureless character of the peak at 26 ppm indicates a less-ordered/amorphous phase with a local 11B coordination sphere that differs significantly from those of four-fold boron in BH$_4^-$ and $N_4$$xBH_x$ borane units. Similar resonances have been observed at 22 and 24 ppm by decomposition of ammonia borane (NH$_3$BH$_3$) and potassium amidoborane (KNNH$_2$BH$_3$), respectively, at elevated temperature [42], and are ascribed to the presence of trigonal boron coordinated to N and H (i.e., BN$_3$, N$_2$BH, and/or NBH$_2$ units). The chemical shift of 26 ppm is in accord with boron in trigonal coordination, thereby suggesting that BN$_3$, N$_2$BH, and/or NBH$_2$ species are formed in addition to KBH$_4$ during decomposition of K[Al(NH$_2$BH$_3$)$_4$]. The presence of less-ordered phases in the decomposition product is also in agreement with the 27Al MAS NMR spectrum, Fig. 6b, which includes a number of rather broad and featureless resonances at approx. 96, 76, 61, 34 and 7 ppm. The peaks at 96, 76, and 61 ppm are ascribed to tetrahedrally coordinated Al whereas the resonances at 34 and 7 ppm are in accord with five-fold and octahedrally coordinated Al, respectively. The narrowest peak with lowest intensity at 76 ppm may originate from an AlO$_4$ impurity, whereas the other major resonances are ascribed to Al coordinated to H and/or N.

Thermal analysis

Simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mass spectrometry (MS) were measured for KAlH$_4$/NH_3BH$_3$ (1:4, S3), see Fig. 7. The DSC data reveal two exothermic thermal events. The first has onset at $T \sim 92$ °C and maximum at $T \sim 104$ °C which is associated with a mass loss of 1.3 wt% and a release of hydrogen, identified by MS. The second event initiates at $T \sim 139$ °C, peaks at $T = 153$ °C and is accompanied by a mass loss of 4.2 wt%, which is mainly assigned to hydrogen according to the MS data. The separation between the first and second event is not well defined and appears to be a smooth transition. Tiny amounts of NH$_3$,
N$_2$B$_3$H$_6$ and B$_2$H$_6$ (magnified 15, 100, and 1000 times, respectively, in Fig. 7) is also observed by MS in the two decomposition steps. MS data further reveal a minor H$_2$, NH$_3$, and N$_2$B$_3$H$_6$ release between T = 60–92 °C, which is not readily observed in TG-DSC. A total mass loss of 6.0 wt% is observed at ~262 °C.

Fourier-transformed infrared spectroscopy

From FT-IR (Fig. 8) of KAlH$_4$–NH$_3$BH$_3$ (1:4, S3) two bands from N···H stretching modes are observed between 3350 and 3250 cm$^{-1}$ and three bands from B···H stretching modes between 2350 and 2200 cm$^{-1}$. These stretching modes are very similar to those observed for NH$_3$BH$_3$. The B···H stretching modes probably have contributions from KBH$_4$ which were identified by PXD of the sample. However, the Al···H stretching mode observed in KAlH$_4$ at 1860–1460 cm$^{-1}$ is no longer present, which is in agreement with the structure. Bands in 680–630 cm$^{-1}$ are assigned to Al···N bending modes as reported for Na[Al(NH$_2$BH$_3$)$_4$] [40]. Between 1600–1540 and 1100–1000 cm$^{-1}$ N···H bending modes are present. Finally, B···H bending modes are located at 1380 and 1160 cm$^{-1}$. A calculated phonon spectrum (Fig. S4) is in good agreement with the FT-IR data, especially the Al···H, calculated phonon spectrum (Fig. S4) is in good agreement with the FT-IR data, especially the Al···H stretching mode observed in KAlH$_4$ at 1860–1460 cm$^{-1}$ is no longer present, which is in agreement with the structure. Bands at 680–630 cm$^{-1}$ are assigned to Al···N bending modes as reported for Na[Al(NH$_2$BH$_3$)$_4$] [40]. Between 1600–1540 and 1100–1000 cm$^{-1}$ N···H bending modes are present. Finally, B···H bending modes are located at 1380 and 1160 cm$^{-1}$. A calculated phonon spectrum (Fig. S4) is in good agreement with the FT-IR data, especially the Al···H stretching mode observed in KAlH$_4$ at 1860–1460 cm$^{-1}$ is no longer present, which is in agreement with the structure.

Sieverts’ measurement

The Sieverts’ data in Fig. 9 reveal a slow gas release initiated at T = 60 °C which continues up to T = 102 °C where 0.3 wt% has been released. This supports the minor gas release observed by MS in a similar temperature range. At T = 102 °C, the first significant desorption step occurs, which releases an additional 1 wt% of gas between 102 and 128 °C. As observed in TGA-DSC, the second desorption step appears as a smooth transition from the first step and initiates at T = 126 °C. Further gas release of 4.2 wt% is observed in the second step. As the sample is kept at isothermal conditions at 200 °C, the total gas release amounts to ~6.0 wt%. These observations are in excellent agreement with the observations in TGA-DSC. A second desorption measurement was performed after hydrogenation of the sample.

![Fig. 8 – Comparison of the FT-IR spectra of KAlH$_4$, NH$_3$BH$_3$, and KAlH$_4$–NH$_3$BH$_3$ (1:4, S3).](Image)

Fig. 8 – Comparison of the FT-IR spectra of KAlH$_4$, NH$_3$BH$_3$, and KAlH$_4$–NH$_3$BH$_3$ (1:4, S3).

![Fig. 9 – Sieverts’ measurement of KAlH$_4$–NH$_3$BH$_3$ (1:4, S3) showing the two desorption experiments conducted in the temperature range RT to 200 °C (ΔT/Δt = 3 °C/min, p(H$_2$) = 10$^{-3}$ bar).](Image)

However, the second measurement does not show any gas release, thus the sample did not absorb any hydrogen.

Discussion

The new potassium-containing aluminum-based amidoborane, K[Al(NH$_2$BH$_3$)$_4$], differentiates from Na[Al(NH$_2$BH$_3$)$_4$] in several ways. The structure contains two different K$^+$···K$^+$ ion bridging modes as the structural model indicates corner-/corner-interactions and edge-/corner-interactions with the BH$_3$ group of the NH$_2$BH$_3$ ion due to the different K–K distances. From TG-DSC-MS data the decomposition of K[Al(NH$_2$BH$_3$)$_4$] appears to occur in two exothermic steps, similar to the decomposition of Na[Al(NH$_2$BH$_3$)$_4$], which is supported by Sieverts’ measurement. However, a small gas release of 0.3 wt% is observed in the temperature range ~60–95 °C, which may be related to slow kinetics in the first decomposition step. The observed decomposition temperatures in TG-DSC-MS are 10–15 °C lower compared to the ones for Na[Al(NH$_2$BH$_3$)$_4$] [40]. On the contrary, the SR-FXD data only suggest one decomposition step, which may be explained by a second decomposition step between two amorphous phases, which is not visible by X-ray diffraction, similar to observations made for Na[Al(NH$_2$BH$_3$)$_4$]. MS reveals a tiny amount of NH$_3$, N$_2$B$_3$H$_6$, and B$_2$H$_6$. However, based on the relative intensities, the NH$_3$ is suppressed compared to the Na-analogue and especially NH$_3$BH$_3$. Finally, no hydrogen uptake is observed in the K[Al(NH$_2$BH$_3$)$_4$] compound, which is contrary to Na[Al(NH$_2$BH$_3$)$_4$] where hydrogen uptake was observed between the two amorphous phases at the same physical conditions as applied in this study. This suggests that the decomposition products of K[Al(NH$_2$BH$_3$)$_4$] are more stable compared to those of Na[Al(NH$_2$BH$_3$)$_4$], or that the decomposition is more exothermic, which is unfavorable. Further attempts to determine the decomposition products by PXD and FT-IR only support the formation of KBH$_4$ while a few Bragg reflections remain unassigned (see Fig. S5). Noticeably, the absence of Al Bragg reflections indicates that aluminum is chemically bound. This is supported by 27Al MAS NMR which reveals the presence of four-, five-, and six-fold coordinated...
aluminum in the decomposed sample. Finally, this may explain the suppression of the release of boron and nitrogen species, as they may be found in coordination with aluminum.

Conclusion

The crystal structure of K[Al(NH2BH3)4] was determined in a triclinic unit cell with space group symmetry P 1. The crystal structure contains [K(NH2BH3)4] octahedra, which link the structure in a 3D network. The decomposition occurs in two distinct steps and the total release of hydrogen amounts to ~6 wt% H2. From 11B and 27Al MAS NMR and PXD, the decomposition mechanism has not been unambiguously determined due to its complexity. Hence, only KBH4 can be identified as a decomposition product whereas aluminum is found in four-, five-, and six-fold coordination while boron is in three-fold coordination with nitrogen or hydrogen atoms as BN3, N2BH, and/or NBH2 units. A tiny amount of NH3,N 3B3H6, in three-fold coordination with nitrogen or hydrogen atoms as identified as a decomposition product whereas aluminum is hydrogen absorption experiments at.

Acknowledgement

The work was supported by the Danish National Research Foundation, Center for Materials Crystallography (DNRF93), the Innovation Fund Denmark (HyFillFast), the Danish Research Council for Nature and Universe (Danscatt), the Carlberg Foundation, and the Fonds de la Recherche Scientifique (FNRS). The authors would like to thank Diamond Light Source for access to beamline I11 and Annabelle Baker, Sarah Day, Claire Murray, and Stephen Thompson for assistance with data collection. Additionally, experiments were conducted at the BM01A beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The authors are grateful to Dmitry Chernyskov and Iurii Dovgaliuk of the Swiss-Norwegian Beamlines for providing assistance in using beamline BM01A. Finally, support by the Polish National Science Center Project 2015/17/B/ST3/02478 and CPU allocation at beamline BM01A. Finally, support by the Polish National Scientific (FNRS). The authors would like to thank Diamond Light Source for access to beamline I11 and Annabelle Baker, Sarah Day, Claire Murray, and Stephen Thompson for assistance with data collection. Additionally, experiments were conducted at the BM01A beamline at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The authors are grateful to Dmitry Chernyskov and Iurii Dovgaliuk of the Swiss-Norwegian Beamlines for providing assistance in using beamline BM01A. Finally, support by the Polish National Science Center Project 2015/17/B/ST3/02478 and CPU allocation at the PL-Grid is kindly acknowledged.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ijhydene.2017.11.080.

References

