Boronate Ligands in Materials: Determining Their Local Environment by Using a Combination of IR/Solid-State NMR Spectroscopies and DFT Calculations

Abstract: Boronic acids (R-B(OH)2) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)3−) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C4H9-B(OH)3]2, which is then used as a basis for the establishment of the spectroscopic signatures of boronates in the solid state. The phase was characterized by IR and multinuclear solid-state NMR spectroscopy (1H, 13C, 11B and 43Ca), and then modeled by periodic DFT calculations. Anharmonic OH vibration frequencies were calculated as well as NMR parameters (by using the Gauge Including Projector Augmented Wave—GIPAW—method). These data allow relationships between the geometry around the OH groups in boronates and the IR and 1H NMR spectroscopic data to be established, which will be key to the future interpretation of the spectra of more complex organic–inorganic materials containing boronate building blocks.

Keywords: boron · density functional calculations · IR spectroscopy · NMR spectroscopy · solid-state structures

Introduction

Boronic acids (R-B(OH)2) and boronates (R-B(OH)3−) have a wide range of applications in organic synthesis, in which they are notably used as reagents in Miyaura–Suzuki coupling reactions.[1] Boronic acids also play an important role in materials science,[1] for example, they are employed for the synthesis of covalent organic frameworks (COFs),[2] which can be used for gas storage, catalysis, or optoelectronics. In contrast, boronates have hardly been studied for materials chemistry applications. Indeed, it is only recently that they were proposed as building blocks for the preparation of hybrid organic–inorganic materials,[3] following an investigation of the structure of layered phenylboronate phases of...
general formula $[\text{C}_x\text{H}_y\text{B(OH)}_2]_2\cdot x\text{H}_2\text{O}$ ($M = \text{Ca, Sr, Ba}; x = 0$ or 1). In this work, phenylboronate anions ($\text{C}_x\text{H}_y\text{B(OH)}_2^-$) were found to act as multidentate bridging ligands between alkaline-earth metal cations, making them interesting building units for the preparation of hybrid materials.

Although the study of alkaline-earth phenylboronates marked the first step towards the understanding of the coordination chemistry of boronate ligands, this field is still largely unexplored. In particular, their spectroscopic signatures in the solid state still need to be analyzed in detail, so that the local environment of boronates within more complex organic–inorganic materials can then be understood more easily. For instance, given that solid-state NMR is one of the main techniques available to characterize hybrid organic–inorganic materials, it is important to be able to relate the NMR spectroscopic data to local structural features around the ligand. The advantage of boronate ligands is that they contain several nuclei of interest for solid-state NMR spectroscopy, namely, ^1H, ^{11}B, and ^{13}C, for which high-resolution experiments can be carried out at natural abundance, and which may each provide complementary information on the local environment of boronates. IR spectroscopy is another technique which should be explored, as the vibration frequencies of the boronate OH groups are likely to inform on the hydrogen-bond (H bond) network around the boronate in the material. However, in the initial work on phenylboronates, no precise link between the OH stretching frequency and the local geometry around the OH groups was proposed.

For an increasing number of complex materials, computational modeling is performed to assist in understanding their structure, formation, reactivity, and spectroscopic data. In particular, it has been shown that NMR parameters in materials can be calculated accurately by using the DFT GIPAW approach (Gauge Including Projector Augmented Wave). This means that if a model structure of the material studied is proposed, the NMR parameters for this structure can be calculated by using GIPAW, and then compared to the experimental NMR spectra. When a good agreement between the experimental spectra and calculated data is obtained, this can help validate the model, as NMR spectroscopy is very sensitive to the local structure around an atom. This approach is commonly referred to as “NMR crystallography.” Similarly, it has been demonstrated that IR vibration modes can be calculated accurately for a wide variety of materials, and that this can be used to help interpret complex IR spectra, as demonstrated for heterogeneous catalysts like MgO.

For boronic acids, calculations of IR and NMR parameters have already been reported, but these were mainly performed on isolated molecules or dimers. It is only recently that Bryce and co-workers reported calculations of NMR parameters for periodic crystals of boronic acids. Concerning boronates, the only computational studies of NMR parameters concern the phenylboronate phases mentioned above. It was shown that in the case of $[\text{C}_x\text{H}_y\text{B(OH)}_2]_2$, different models that differed in the orientation of the OH groups can be discriminated by comparing experimental and calculated NMR spectra, making NMR very attractive for the study of these materials. In contrast, calculations of IR data from boronate structures have not yet been reported, despite the fact that this could provide complementary insight into the arrangement around the hydroxyl groups, given the high number of different OH stretching frequencies observed on the IR spectra of phenylboronates.

The aim of this study is to improve methodologies to determine material structures involving boronate ligands, in which cohesion forces based on H-bonds and weak van der Waals interactions are present, and to help make the best use of both the IR and NMR spectroscopies for the characterization of these phases. To this end, we mainly focus here on a new crystalline phase that involves an alkylboronate chain, calcium butylboronate. First, the synthesis and crystallographic structure of this new material is described, and the coordination chemistry of the boronate analyzed. The structure is characterized by several techniques, including IR and multinuclear solid state NMR spectroscopy (^1H, ^{11}B, ^{13}C and also natural abundance ^{43}Ca NMR spectroscopy).

The exact atomic positions in the structure are then determined by using an NMR crystallography approach. Finally, both the Ca-butyloborinate and the previously published Ca-phenylboronate structure are the subject of periodic DFT calculations of the ^1H NMR parameters and IR OH stretching frequencies, leading to a precise mode of identification of the different geometries of OH groups and H bonds in boronates, based on ^1H NMR and IR spectra.

Results and Discussion

Synthesis of Ca-butyloboronate and description of its crystal structure: Calcium butylboronate was synthesized by following the procedure previously established for $[\text{C}_x\text{H}_y\text{B(OH)}_2]_2$ (CaBPh_3) by precipitating a solution of $\text{C}_4\text{H}_9\text{B(OH)}_3^-$ by Ca^{2+}. The microcrystalline powder obtained corresponds to $[\text{CaC}_2\text{H}_4\text{B(OH)}_2]_2$ (CaBBu), according to elemental and thermogravimetric analyses (see the Experimental Section and Figure S1, Supporting Information).

Powder X-ray diffraction and electron microscopy confirm the crystallinity of the sample (Figure 1). On the powder pattern, the strongest peak at small angles corresponds to an interplanar distance of 16.4 Å, which suggests that the phase has adopted a lamellar structure, by analogy with previous work on phenylboronates and phenylphosphonates. Rietveld refinements were carried out on the diffractionogram recorded with synchrotron radiation, confirming the layered structure of the material (Figure 1B). CaBBu is composed of layers of Ca^{2+} interconnected through butylboronate ligands, with the alkyl chains facing each other in the interlayer space. The calcium is in an eight-coordination environment, and is bound to the OH groups of six different butylboronate ligands. There are two independent boronate ligands in the unit cell, which both play the role of bridging ligands between three Ca^{2+} cations (Figure S2, Supporting Information).
Information). This actually marks a difference compared to the Ca-phenylboronate structure, in which the boronate ligands were only bridging two Ca\(^{2+}\) cations, leading to the formation of chains of Ca-phenylboronate, which then interacted through H bonds to form a layered structure.\(^{[3]}\)

Solid-state NMR and IR spectra: The previous study of phenylboronate phases had shown that IR and multinuclear solid-state NMR can be used to shed light on the H-bond network in these materials, and thereby help understand more precisely their structure at the molecular level. The \(^{11}\)B, \(^{13}\)C, \(^1\)H, and \(^{43}\)Ca magic-angle spinning (MAS) NMR spectra of CaBBu are shown in Figure 2.

The \(^{11}\)B MAS NMR lineshape suggests that the two independent boron sites have very similar NMR spectroscopic parameters. It should be noted that this phase was characterized several times by \(^{11}\)B MAS NMR spectroscopy at different magnetic fields, because distortions in the lineshape were often observed on the low frequency side of the signal (Figure S3, Supporting Information), deviating from the expected superimposition of two “pure quadrupolar line-shapes”. In a previous \(^{11}\)B NMR spectroscopic study of aryl-
boronic acids and their catechol cyclic esters, Bryce and co-workers had also reported lineshape distortions, which were found to be caused by the use of hard pulses and by anisotropic relaxation effects.[11e] Here, neither the pulse power nor the relaxation were found to affect the lineshape (Figure S4, Supporting Information). However, the preferential orientation of the crystallites within the rotor was found to have an influence (Figure S3, Supporting Information), and this problem can be partly circumvented by physically diluting the sample in silica. The two independent 11B sites were then resolved by using a 3Q-MAS[14] experiment (Figure S5, Supporting Information), from which the NMR parameters of each site were extracted. These are consistent with the ones measured for Ca-phenylboronate ($\text{Ca}[\text{C}_6\text{H}_5\text{B(OH)}_3]_2$, CaBPh), with only slightly higher C_Q and δ_{iso} values (Table S1, Supporting Information). The origin of this small difference in 11B parameters is still under investigation at this stage.

The $^1H-^{13}C$ cross-polarization MAS (CPMAS) NMR spectrum of CaBBu recorded at room temperature shows the presence of five distinct peaks (at $\delta = 16.0, 29.4, 29.9, 30.2, \text{and } 30.9 \text{ ppm}$) and one complex multiplet (centered at $\delta = 27.6 \text{ ppm}$; Figure 2). Eight distinct signals were a priori expected, due to the nonequivalence of the butyl chains in the crystal structure. The signal at $\delta = 16.0 \text{ ppm}$ can be assigned to overlapping resonances from the two CH$_3$ carbon atoms. The signals from the middle carbon atoms of the butyl chains are all between $\delta = 29.4$ and 30.9 ppm, with, in this case, four distinct resonances, as expected from the crystal structure. $^{13}C(\text{1H})$ REDOR (rotational echo double resonance)[15] experiments were carried out to further assign each of these resonances, as the dephasing observed of the ^{13}C signals depends on the C–B distances (Figure S6, Supporting Information). As shown in the REDOR spectrum, Figure 3, the two highest frequency signals correspond to the CH$_3$ groups closest to the B. The multiplet at $\delta = -27.6 \text{ ppm}$ is due to the two C atoms attached to the B; the complex form of the peak is due to J couplings with neighboring 11B and 10B isotopes, as well as residual dipolar/quadrupolar interactions.[11b] It is noteworthy that all ^{13}C resonances are particularly sharp, leading to a very well-resolved spectrum in comparison with the data recorded so far on phenylboronate structures, and that the relative positions of the different ^{13}C resonances observed here for CaBBu are in agreement with ^{13}C solution NMR spectra of butylboronate anions in water (Figure S7, Supporting Information).

Natural-abundance 43Ca MAS NMR spectra were also recorded at two different magnetic fields,[15] because the study on Ca-phenylboronate had shown that 43Ca NMR spectroscopy can be useful to discriminate between different models of the structure.[3] For CaBBu, only one featureless lineshape was observed, which was simulated by fitting the data recorded at the two fields (Figure S8, Supporting Information), considering the presence of only one Ca site (as in the experimental crystal structure). The 43Ca parameters measured ($\delta_{iso} = 14.6 \pm 2.0 \text{ ppm}, \ C_Q = 1.50 \pm 0.15 \text{ MHz}, \ \eta_Q = 0.60 \pm 0.15$) were consistent with those found so far for Ca-organic complexes,[15b] including Ca-phenylboronate.[3]

The 1H NMR spectrum of CaBBu was recorded at 600 MHz by using the w-DUMBO[48] sequence (Figure 2 and Figure S9, Supporting Information). It shows the presence of an intense signal centered at $\delta = -1 \text{ ppm}$, corresponding mainly to protons from the alkyl chain. Other shoulders at higher chemical shifts are also present on the spectrum (notably at $\delta > 5 \text{ ppm}$), which are likely to correspond to OH groups involved in H bonds. IR spectroscopy confirms the presence of fairly strong H bonds, with a broad OH stretching band centered at $\sigma = -3326 \text{ cm}^{-1}$ (Figure 4 and Figure S10, Supporting Information). This band is actually at lower wavenumbers compared to the broad OH bands previously observed for CaBPh, which suggests that the H bond is actually stronger in the CaBBu phase. Other OH groups not involved in H bonds are also present in the structure, as attested by the sharp OH stretching band; their 1H chemical shift actually overlaps with those of the butyl chain protons.

Modeling of the Ca-butylboronate structure and calculation of NMR spectroscopic parameters: To determine the position of the H atoms in the structure,[19] and also to locate

Figure 3. $^{13}C(\text{1H})$ REDOR NMR spectra of Ca[C$_4$H$_9$-B(OH)$_3$]$_2$, recorded at 23 and $-55^\circ C$. Spectra acquired by using a total dephasing time of 4.8 ms, with (gray line) or without (black line) π pulses on the 11B spectrum.
more precisely the other elements, periodic LCAO-B3LYP D* calculations were considered,\[20\] which include the Grimme correction to take into account the weak dispersion forces. When looking closely at the O···O bond lengths in the experimental crystal structure, it seems clear that there are several short O···O distances (<2.9 Å), which could allow “moderate”\[21\] H bonds between different butylboronate ligands to be established. With this in mind, different possible orientations for the OH groups within the crystal lattice were proposed, by starting from the experimental XRD crystal structure (Exp-R1). For each configuration, the H positions were then relaxed computationally. Each relaxed structure was analyzed in detail. It turned out that in some cases, the calculations converged towards a local energy minimum, with unexpected and unlikely structural features, such as very short Ca···H distances (~2.28 Å). Of all the configurations tested, the most stable one had only one O–H···O hydrogen bond.\[22\]

For the most stable H-relaxed model, the \(^1\)H, \(^{13}\)C, \(^{11}\)B, and \(^{43}\)Ca NMR spectroscopic parameters were calculated by using the GIPAW approach, and the corresponding NMR spectra were simulated. The comparison between experimental and calculated spectra is shown in Figure 5. Clearly, discrepancies can be noticed, mainly in the calculated \(^{13}\)C NMR spectroscopic resonances.\[23\] Indeed, the calculated \(^{13}\)C chemical shifts for the “C\(_3\)” carbon atoms (3rd down the butyl chain, when starting from the B) are at \(\delta = -36\) ppm, which is much higher than the experimental values (\(\delta = 29.4\) and 29.9 ppm), and actually leads to an inversion of the positions of the C\(_2\) and C\(_3\) atoms in the calculated spectrum.

The model resulting from the relaxation of H positions only being unsatisfactory, additional calculations were carried out, in which C, B, O, and Ca atoms of the CaBBu structure were successively relaxed, revealing that relaxations of C, O, and B positions are energetically most relevant (Table 1). Slight modifications in bond lengths were observed upon these relaxations (Table S2, Supporting Information), but the number of H bonds remained unaffected. For each model, NMR spectroscopic parameters were calculated (Figure 5 and Tables S3–S5, Supporting Information). The additional relaxations do not significantly affect the calculated \(^1\)H, \(^{11}\)B, and \(^{43}\)Ca NMR spectroscopic data, as the spectral simulations produce similar results as in the H-relaxed model. In contrast, when comparing the calculated \(^{13}\)C NMR spectroscopic data with the experimental one, it appears that additional C relaxation helps to improve the...
Table 1. Structural models on which geometry optimizations and calculations of IR vibrational modes or NMR spectroscopic parameters were carried out.

<table>
<thead>
<tr>
<th>Optimized atomic positions</th>
<th>Grime correction</th>
<th>Final energy per unit cell [Hartree]</th>
<th>Grime correction per unit cell [Hartree]</th>
<th>IR calculations</th>
<th>GIPAW NMR calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca-butylboronate</td>
<td>H</td>
<td>yes</td>
<td>−5992.8415</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>yes</td>
<td>−5992.9857</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>no</td>
<td>−5992.6661</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>C,H,O,B</td>
<td>yes</td>
<td>−5993.0774</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>C,H,O,B,Ca</td>
<td>yes</td>
<td>−5993.1030</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Ca-phenylboronate</td>
<td>H</td>
<td>yes</td>
<td>−3291.6475</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>C,H,O,B,Ca</td>
<td>yes</td>
<td>−3291.6723</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

modeling of the butyl chain, because 13C resonances of the C$_2$ and C$_3$ atoms become much closer in chemical shift (Table S4, Supporting Information). This can be explained by the changes in the C$_2$–C$_3$ and C$_3$–C$_4$ bond lengths which occur upon relaxation of the C positions (Table S2, Supporting Information). However, even when all atoms in the structure are relaxed, discrepancies remain for the C$_1$ and C$_4$ chemical shifts, and the highest frequency signal still belongs to a C$_3$ atom, in disagreement with the REDOR assignment reported above.

In previous studies aimed at comparing experimental and calculated NMR chemical shifts in organic and inorganic compounds, it has been shown that better agreement between calculated and experimental chemical shifts can be reached by taking into account temperature effects.[24] Indeed, while GIPAW calculations are performed at ~0 K, NMR spectroscopic experiments are often performed at room temperature, and this can be at the origin of discrepancies between the two. Thus, to see if a better agreement between experimental and calculated NMR spectroscopic parameters could be observed for the Ca-butylboronate structure, additional 1H–1C CPMAS NMR spectra were thus recorded at decreasing temperatures down to ~55°C (Figure 6), and 13C[11B] REDOR experiments were performed to assist in the assignment of C$_2$ and C$_3$ resonances at each temperature (Figure 3). Clearly, when performing experiments at lower temperatures, changes in the isotropic chemical shifts of C atoms are observed, with the C$_3$ resonances being the most affected. The expected experimental chemical shifts at 0 K were thus extrapolated by linear regression (Figure S11, Supporting Information), which shows that the relative order between C$_2$ and C$_3$ resonances becomes consistent with GIPAW calculations (Figure 6). It should be noted that 1H DUMBO NMR spectra were also recorded at low temperatures (down to ~50°C), but that no changes in peak positions were observed, in contrast with 13C NMR spectra. The variations in 12C chemical shifts with temperature may be caused by changes in “mobility” of the butyl chain in CaBBu, which may be reflected in C$_2$ and C$_3$ chemical shifts mainly: at room temperature, the C$_2$ and C$_3$ resonances have the same relative positions as in 12C solution NMR spectra, whereas when decreasing the temperature, the system becomes more rigid, leading to changes in the C$_2$ and C$_3$ isotropic chemical shifts.

Although low-temperature experiments help rationalize the relative order of the different 13C resonances, discrepancies remain between the spectra calculated from the experimental models and those recorded experimentally. In particular, concerning the 13C NMR spectroscopic data, all resonances calculated by GIPAW for the fully relaxed structure are ~2 to 5 ppm below the experimental ones, being most noticeable for C$_1$ and C$_4$ resonances, even after extrapolation at 0 K. A systematic shift in calculated 13C resonances had also been observed for Ca-phenylboronate, but towards higher frequencies.[3] An explanation of this discrepancy may be that some of the empirical parameters in the Grime correction need to be adjusted,[25] or that there are some basis set or DFT functional choice effects in the calculations. We did not attempt to test these points, as it was beyond the scope of this work.

Overall, from this modeling study of Ca-butylboronate, it is clear that starting from the experimental atomic positions of the Exp-R1 refined structure, once all protons have been positioned, the relaxation of the H atoms only does not provide a reasonable model of the structure. Further relaxations...

![solution spectrum](image-url)
of the other atomic positions (mainly C) are thus necessary, in line with the previous study of Ca-phenylboronate.[3] Based on the fully relaxed model of Ca-butylboronate, more accurate values of interatomic bond lengths (especially C–C lengths) were derived, and the experimental XRD data were thus re-refined with more restrictive constraints (Exp-R2 structure), to offer a more accurate description of the CaBBu structure.

IR vibration frequencies and 1H chemical shifts of the OH groups: The representations of the local environment of the hydroxyls in the fully relaxed models of CaBBu and CaBPh are shown in Figure 7. Simple geometrical considerations allow the OH groups to be classified into three categories: 1) those involved in a fairly strong H bond (d(OH–O) < 1.9 Å),[26] 2) those for which the closest O atom neighbor is more than 2.8 Å distant (“free” OH groups), and 3) those that are between these two situations (for which the shortest OH···O distance is between 2.1 and 2.4 Å).

More detailed analyses of the geometry of the H bonds can be used to account for the differences in IR and NMR spectroscopic data between CaBBu and CaBPh. This is particularly true when looking at the strongest H bonds in these structures. Indeed, for CaBBu, the strongest H bond is characterized by an O–H···O distance of 1.728 Å and an O–H–O angle of 172.6°, which means that it is stronger and more directional than the two strongest H bonds in CaBPh (OH···O distances of 1.834 and 1.843 Å and O–H–O angles of 159.1° and 165.5°). This explains the differences in O–H stretching frequencies between CaBPh and CaBBu below 3500 cm⁻¹ (Figure 4).

When considering both Ca-butylboronate and Ca-phenylboronate phases, it is clear that all the other OH groups cover a wide range of 1H chemical shifts and IR stretching frequencies, and it is naturally appealing to try to relate these chemical shifts and vibration frequencies to the local structures around the OH. Thus, in addition to the GIPAW calculations of 1H chemical shifts, the anharmonic vibration frequencies of the OH groups were calculated for different...
structural models of these two phases (Table S6, Supporting Information).

The comparison between calculated and experimental vibration frequencies is shown in Figure 4. Globally, calculations reproduce well the separation between the strongest H bonds (<3500 cm\(^{-1}\)) and all the others (>3500 cm\(^{-1}\)). However, a rather large discrepancy in the calculated wavenumber for the strongest H bonds is noticeable for the fully relaxed models of both CaBPh and CaBBu (>100 cm\(^{-1}\) for CaBBu). This is probably due to the fact that the anharmonic frequencies are computed by sampling points along the O–H bond direction, assuming this is the actual mode direction, which may not be true when the H atom is affected by H bonds with neighboring oxygen atoms. Concerning all the OH groups with vibration frequencies >3500 cm\(^{-1}\), smaller discrepancies between calculated and experimental values are observed for the fully relaxed models of CaBBu and CaBPh relative to the H-relaxed models (Figure 4 and Table S6, Supporting Information). This is consistent with the fact that the fully relaxed structures correspond to a more accurate description of the structure of these phases, as shown by the NMR crystallography study (see above and ref. [3]).

Based on the calculated IR and NMR parameters, it is now possible to relate different ranges of IR wavenumbers and \(^{1}\)H chemical shifts to a given OH–O distance (Figure 7B). This clearly shows that the three categories of OH groups described above lead to three distinct regions on the IR and \(^{1}\)H NMR spectra, with little overlap between the different regions. It should be noted that the OH–O distance is the only geometrical parameter that allowed such trends to be defined for the two boronate structures, which is not fully surprising given that in several other studies aimed at relating H-bond structures to \(^{1}\)H chemical shifts in materials, this is also the geometrical parameter which has been used.[27] The information summarized in Figure 7B demonstrates the complementarities of IR and NMR spectroscopies for establishing local environments of boronates in materials, and the added value of recording IR spectra of these phases. Indeed, having carefully analyzed the different experimental parameters which may have caused the formation of these defects (see the Supporting Information for details, Figures S13–S15), it appears that these are mainly due to the nature of the organic chain bound to the boron. The formation of surface defects in the case of CaBBu would result of an imperfect growth of the crystals during the precipitation of the material, the driving force for completely filling some of the layers with butylboronates being too weak, due to the weak interactions between neighboring butyl chains. In contrast, for CaBPh structures, the stronger interactions between neighboring phenylboronates[31] leads to a complete filling of each layer, thereby preventing the formation of such defects.

In the previous study of Ca-phenylboronate phases, we had shown that the material does not appear to have the propensity to exfoliate and allow the intercalation of other organic molecules between the layers. Here, in a similar fashion, we were unable to intercalate organic molecules in the interlayer space of the CaBBu structure. Indeed, attempts to intercalate molecules like pyrene or 1,8-diaminonaphthalene between the butyl chains were unsuccessful, whatever the synthetic strategy attempted. Such behavior may appear as strange for the butyl system, given the low density of packing and the overall weakness of the van der Waals interactions. Thus, a possible explanation for the absence of intercalation properties of CaBBu is that it would
require exposing some of the butyl chains to the solvent and cause a disruption in the order between the chains in the layers, both situations being energetically unfavorable and creating disorder in the system.

Overall, this comparative analysis of CaBPh and CaBBu structures points to structural and textural modifications that can be observed in boronate materials, when varying the nature of the organic chain bound to the boron. Such considerations may help guide the choice of which type of boronate ligand to choose in future syntheses of more complex boronate-containing materials.

Conclusion

By studying Ca[C4H9-B(OH)3]2, progress has been made in the understanding of the coordination chemistry of boronate ligands and in the determination of their spectroscopic signatures in the solid state. On one hand, new possible bridging modes have been found for boronate ligands, which complement those previously observed for phenylboronate structures. On the other hand, by performing DFT calculations of NMR spectroscopic parameters and anharmonic OH stretching frequencies, it was possible to relate parts of the experimental IR and 1H NMR spectra to signatures of hydroxyl groups, involved in H bonds of varying strengths, as quantified here in changes in OH–O distances. Both points mentioned above are particularly valuable in determining how boronates can be used as building blocks for the preparation of more complex hybrid organic–inorganic materials, and to be able to establish their local environment with precision within these solid phases. More generally, similar strategies, which combine both experiments and computations, would deserve to be applied more often for the design and study of new families of ligands.

As a result of the work we carried out here on Ca-butylboronate, and the comparison we made with our previous work on phenylboronates, the following experimental/computational methodology can now be proposed for future investigations of the structure of boronate containing materials, whether crystalline or disordered. First, high-resolution solid-state NMR spectra should be recorded on the material, making sure that several different nuclei are analyzed (1H, 13C, 11B, and even metal cations like 43Ca). Spectral editing should be performed by using dedicated pulse sequences, and NMR parameters extracted for each nucleus, taking into account possible variations in these parameters with temperature. In parallel, IR spectra should be recorded to determine the different kinds of OH groups in boronates, the possible presence of H bonds, and the range of variation of OH–O distances (by using the information summarized in Figure 7B). From the NMR and IR spectra recorded, detailed information on the local structure around the boronate will have been obtained, which can then be used to elaborate a sophisticated structural model of the material. Once fully relaxed employing a hybrid-DFT approach (including the weak van der Waals interactions in the theoretical description), the validity of this model can be tested, by checking whether the NMR and IR spectroscopic parameters are consistent or not with those observed experimentally. This robust strategy is currently being applied in our group to the analysis of other organic–inorganic materials involving boronates.

Experimental Section

Synthesis of Ca[C4H9-B(OH)3]2 (Ca-butylboronate, CaBBu): For the synthesis of CaBBu, butylboronic acid (C4H9-B(OH)2, Alfa Aesar, 98 % purity), calcium chloride dihydrate (CaCl2·2H2O, 99.4 % purity, Acros Organics), and sodium hydroxide (NaOH, Acros Organics) were used as received, and reactions were carried out by using ultrapure water and absolute ethanol.

The synthesis of CaBBu was performed as follows. Microbeads of NaOH (192.4 mg, 4.81 mmol) were dissolved in a 1 (1) H2O/EtOH mixture (14 mL). Butylboronic acid (489.7 mg, 4.8 mmol) was then added to the solution under magnetic stirring. After dissolution of the boronic acid, an aqueous solution of CaCl2·2H2O at 118.018 g L−1 (2.4 mmol, 3 mL) was added dropwise, leading to the immediate formation of a white precipitate. The suspension was stirred for ~30 min at room temperature.

The suspension was then filtered on a sintered glass frit under vacuum, maintaining the vacuum for 15 min. The precipitate was then washed twice with a 1(1) H2O/EtOH mixture (10 mL), the vacuum being maintained for 15 min after each wash, and then twice with diethyl ether (10 mL), the vacuum being maintained for 5 min after each wash. The white powder was then dried in a furnace at 40°C for ~3 days. Yield: 570 mg (85 %); elemental analysis calc (%) for C4H24B2O6Ca: C 34.6, H 8.6, Ca 14.4, B 7.8; found: C 33.7, H 8.7, Ca 14.6, B 7.4. Attempts to recrystallize this sample to obtain single crystals were unsuccessful.

Characterization of Ca[C4H9-B(OH)3]2: Elemental analyses were carried out by the Service Central d’Analyse of the CNRS (Vernaison, France). IR spectra were recorded in transmission mode on KrB pellets, by using an Avatar 320 FTIR spectrometer.

SEM measurements were conducted on a Hitachi S4800 instrument under an excitation voltage value between 2 and 8 kV depending on the powder’s surface charging. Powdered samples were deposited on double-face tape and then Pt-metallized by sputtering under vacuum.

Synchrotron powder X-ray diffraction measurements, indexing, and structure analysis: Since no crystals suitable for single-crystal X-ray diffraction were obtained, high-resolution X-ray diffraction powder patterns were recorded. Synchrotron powder diffraction data were obtained at Swiss-Norwegian Beam Lines at ESRF (Grenoble, France). The sample was introduced into 0.5 mm diameter glass capillaries. Data collections were performed at 295 K with a MAR345 Image Plate detector by using a monochromatic wavelength of λ = 0.697751 Å. The calculated absorption coefficient μR (m = powder packing factor, r = linear absorption coefficient, R = radius of the capillary) was estimated as 0.12. Two sample-to-detector distances were used (150 and 400 mm) to combine the advantages of high structural and angular resolutions. Due to the very high relative intensity of the first diffraction ring, two exposure times were used for each sample-to-detector distance: one measurement with a non-saturated first ring (to have the exact relative intensities for all the diffraction peaks) and one measurement with a saturated first ring to increase the statistic counting for the low relative intensity diffraction peaks. The detector parameters and the wavelength were calibrated with NIST LaB6. The highest resolution of the MAR345 detector was used: 3450 x 3450 pixels with a pixel size of 100 μm. During the exposure time the capillaries were rotated by 60°. The 2D data were integrated with Fit2D program. Highly accurate integrated intensities were obtained thanks to a good powder average achieved by projecting the whole scattering information on the 2D detector. Uncertainties of the integrated intensities were calculated at each 29°point by applying Poisson statistics to the intensity data, and considering the geometry of the detector.

D. Laurencin et al.
Boronate Ligands in Materials

The first 20 observed reflections from the nonsaturated data with the large sample-to-detector distance (high angular resolution) were used for indexing the unknown patterns. The DICVOL04 indexing program was successfully used to reveal the monoclinic lattice of Ca-butyliborionate, and systematic extinctions indicated space group P21/c. A Le Bail fit was performed by using the FULLPROF2k program. The peak shape was sample-to-detector distance of 400 mm agree with the monoclinic P21/c space group: R= 4.57% and Rexp= 5.79% with a = 16.3404 (6), b = 8.3971 (2), c = 9.8668 (4) Å and β = 90.480 (3)° (V = 1361.25 (1) Å³).

The structure was then solved in the centrosymmetric group P21/c by the global optimization of the structural model in direct space by using simulated annealing (in parallel mode) with the FOX program. As a cost function, the integrated R factor of the unsaturated short sample-to-detector distance pattern and anti-bump function (based on the minimal length Ca-O: 2.3, Ca-B: 2.5, Ca-C: 2.5, and Ca-Ca 3.5 Å) weighted at 0.6/0.40 were used. One independent Ca(C6H5B(OH)3)2 object was considered (corresponding to 4 motifs per unit cell in agreement with the expected density of the compound). The introduced Ca(C6H5B(OH)3)2 object was described as follows by 17 atoms (1 Ca, 2 B, 6 O, and 8 C): with bond lengths Ca-O: 2.40, B-O: 1.50, B-C: 1.60, and C-C: 1.55 Å, and angles O-B-O 109.5, O-B-C 109.5, B-C-C 115, and C-C-C 109°. The Ca-O-B angles were not restrained to solve the orientation of the organic chain around the alkaline-earth cation. H atoms were not considered here due to their weak scattering contrast for X-rays. The position of the central Ca atoms was allowed to vary, as well as the two Ca-O-B angles, with the use of the Dynamical Occupancy Correction for the automatic identification of the special crystallographic positions. The solution, with the x coordinate of Ca close to 0, was slowly found with all atoms in the general 4e position.

The crystal structure was refined by the joint Rietveld method by using the four synchrotron data sets and the program FullProf2k. No impurity was identified in the powdered sample. All site occupations were fixed to unity and restraints were applied. For the first refined model (Exp-R1), the restraints on interatomic distances were set to B-O: 1.50(2), B-C: 1.62(2), C-C: 1.54(2) Å and on angles to O-B-O 103(4), O-B-C 113(4), C-C-C 109(4). In the final run, 83 parameters were refined: 51 positional, and 3 isotopic displacements (one for calcium, one for BO groups, and 1 for carbonyl chains), 4 lattice parameters, 16 parameters for the 4 pseudo-Voigt-profile functions, four scale parameters and 1 preferred orientation. The final agreement factors were conventional Rp= 0.044 and 0.082, Rp= 0.019 and 0.058, and global χ2= 0.99 for the four patterns of Ca-dibutylboronate used (a = 16.4264 (9), b = 8.3971 (4), c = 9.8642 (6) Å and β = 90.485 (3)°). Following the DFT and NMR crystallography study of the structure, the system was refined a second time (Exp-R2) by using the same methodology, but applying more restrictive restraints (interatomic distances set to B-O 1.51(1), B-C 1.62(1), C-C 1.54(1) Å and angles set to O-B-O 103(4), O-B-C 113(4), C-C-C 114(1)°), to reach a better description of the exact location of the C atoms in the lattice. The final agreement factors were very similar as for Exp-R1: conventional Rp= between 0.051 and 0.093, Rp= between 0.024 and 0.066 and global χ2= 0.17 for the four patterns of Ca-butyliborionate used (a = 16.4268 (9), b = 8.3969 (4), c = 9.8644 (6) Å and β = 90.462 (3)°). CCDC-903870 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

The corresponding Rietveld plots are shown in Figure 1, and the refined structural parameters are summarized in Table S7. Supporting Information. A general representation of the structure is shown in Figure 1, together with details of the calcium local environment.

Solid-state NMR spectroscopic experiments: 1B MAS NMR spectra were recorded on Varian VNMRS 400 MHz (9.4 T) and 600 MHz (14.1 T) NMR spectrometers at frequencies of 128.38 and 192.44 MHz, respectively, by using 3.2 mm Varian T3 HXY MAS probes spinning at 20 kHz. The ground sample was physically diluted in SiO2 prior to the NMR spectroscopic measurements (with a 1:1 Ca[C6H5B(OH)3]2/SiO2 weight ratio), to reduce preferential orientation of the platelet-shaped single crystals in the rotor, as this was found to strongly affect the 2nd order quadrupolar lineshapes (Figure S3, Supporting Information). At both fields, the temperature was regulated such that the sample temperature in rotor was 23°C (as calibrated by using Pb(NO3)2). At 9.4 T, the 1B spin-echo experiments were performed with a ~45° solid pulse of 1.6 μs, a recycle delay of 6 s (full relaxation), and 100 kHz spin-dipole 1H decoupling; 560 transients were recorded. At 14.1 T, the single-pulse experiment was performed with a ~45° solid pulse of 1 μs, a recycle delay of 6 s (full relaxation), and 100 kHz spin-dipole 1H decoupling; 72 transients were recorded. 1B chemical shifts were referenced to external NaB4H4 at δ = −42.05 ppm (used as a secondary reference).

1H–13C CP MAS NMR spectra were recorded on a Varian VNMRS 600 MHz (14.1 T) spectrometer at a 13C frequency of 150.83 MHz, by using a 3.2 mm Varian T3 HXY MAS probe. Here, the as-prepared sample was directly characterized without dilution in SiO2, because no attempt to extract 13C CSA parameters was performed: the spinning sidebands are very weak in intensity when spinning at 5 kHz, and disappear completely when spinning at 10 kHz. The CPMAS spectra were recorded spinning at 10 kHz, using a contact time of 2 ms (ramped pulse), and 100 kHz spin-dipole 1H decoupling during acquisition. It should be noted that no change in relative intensity of the 13C peaks was observed for contact times (CT) of 0.5 and 5 ms. The temperature was regulated during the experiments at 23 and −55°C (temperature in the rotor, as calibrated by using Pb(NO3)2). Recycle delays of 5 and 8 s were used at −55 and 23°C, respectively, and 100 transients were recorded in both cases. Additional spectra were also recorded at temperatures between −55 and 23°C. 13C NMR spectroscopic chemical shifts were referenced externally to adamantane (used as a secondary reference), the high frequency peak being set to δ = 38.55 ppm.

The 13C(13B) REDOR[15] NMR spectroscopic experiment (Figure S6, Supporting Information) was carried out on a Varian VNMRS 600 MHz (14.1 T) spectrometer, by using a 3.2 mm Varian T3 HXY MAS probe spinning at 10 kHz, and sample temperatures of 23 and −55°C. The same CP conditions as for 1H–13C CPMAS were used, with a contact time of 2 ms and recycle delays of 5 and 8 s at −55 and 23°C, respectively. In the [13C][13B] REDOR experiment, a 4.6 ms total dephasing time was applied by using rotor-synchronized π pulses on 13B (8 ms π pulse—measured directly on the sample). Spin-dipole 1H decoupling (100 kHz RF) was used during the dephasing and acquisition periods. 48 transients were recorded in both cases.

Windowed-DUMBO 1H-MAS NMR spectroscopic experiment[16] were carried out on a Varian VNMRS 600 MHz (14.1 T) spectrometer at a frequency of 599.82 MHz. The RF field strength was 100 kHz and the duration of one DUMBO element 34.4 µs, and the observation window 0.8 µs. 16 transients were acquired, with a recycle delay of 16 s. A scaling factor was applied to the frequency axis to ensure its accurate calibration. The 1H NMR spectroscopic chemical shifts were referenced to external adamantane at δ = −1.8 ppm from tetramethylsilane (TMS), used as a secondary reference.

Natural abundance 45Ca MAS NMR spectra of Ca2[C4H9-B(OH)3]2 were recorded on Varian VNMRS 400 (9.4 T) and 600 MHz (14.1 T) spectrometers at frequencies of 26.92 and 40.37 MHz, respectively. The as-prepared sample was directly characterized without dilution in SiO2, due to the very low sensitivity of calcium-43. At 400 MHz, a 7.5 mm Varian HX MAS probe was used, spinning at 4.5 kHz. A single-pulse experiment was carried out, by using a 2.8 μs 90° solid pulse, and a recycle delay of 0.5 s. A total of 700000 transients were acquired (which corresponds to ~4.5 days of acquisition). At 600 MHz, a 9.5 mm Varian HX MAS probe was used, spinning at 4 kHz. The DFS (double frequency sweep)[17] signal-enhancement scheme was applied for sensitivity enhancement prior to a 4 μs 90° solid pulse selective for the central transition. The DFS pulses were first optimized on 45Ca-enriched Ca2[C4H9-B(OH)3]2, with a convergence sweep from 400 to 800 kHz (duration ~6 ms; RF −8 kHz), leading to an enhancement factor of ~2. A recycle delay of 0.5 s was used, and 180000 transients were recorded (which corresponds to ~25 h of acquisition). Chemical shifts were referenced at δ = 0 ppm to a 1 mol L−1 aqueous solution of CaCl2.
DFT calculations: Geometry optimizations and calculations of IR vibrational modes: The Ca-butylboronate cell with monoclinic symmetry (Figure 1) was considered. The unit cell parameters were set to the X-ray diffraction parameters. The cell parameters and the crystal symmetry (space group) were kept fixed during geometry optimization. This constraint was imposed so as to ensure consistency between experimental and optimized structures. While cell parameters were kept fixed, all atoms or only some types of atoms of the unit cell were optimized (see Table 1). The Exp-R1 structure was used as a starting point for positioning protons and then performing geometry optimizations.

In this project, we decided to perform calculations with the B3LYP functional, which is well suited to the study of molecular crystals and coordination polymers. The Grimme correction was included in the calculations to take into account the weak dispersion forces, as in the systems studied here, van der Waals interactions are particularly relevant to describe inorganic polymers. The Grimme correction was included in the calculations, which is well suited to the study of molecular crystals and coordination polymers.

Calculations of NMR parameters: The NMR parameters were calculated within the DFT method using the QUANTUM-ESPRESSO code[1] in which the GIPAW method[2] was implemented, keeping the atomic positions equal to the values previously calculated with CRYSTAL. The PBE (Perdew, Burke, and Ernzerhof) generalized gradient approximation[3] was used and the core electrons were described by norm conserving pseudopotentials[4] in the Kleinman-Bylander[5] form. The wave functions were expanded on a plane wave basis set with a kinetic energy cut-off of 1088 eV. The integral over the first Brillouin zone was performed by using a Monkhorst-Pack 2x2x2 k point grid. The isotropic chemical shift δ_i is defined as $\delta_i = -\alpha_i \cdot \gamma_i$ in which α is the isotropic shielding and γ_i is the isotropic shielding of the same nucleus in a reference system as previously described.[6] Diagonalization of the symmetrical part of the calculation chemical shielding tensor provides its principal components $\alpha_1, \alpha_2, \alpha_3$ from which the chemical shift components $\delta_1, \delta_2, \delta_3$ can be calculated. δ_1, δ_2, and δ_3 are defined, such as $\delta_1 \geq \delta_2 \geq \delta_3$, and $\delta_3 = 1/3(\delta_1 + \delta_2 + \delta_3)$. The CSA parameters are defined by $Q = \alpha_1 - \alpha_2 \approx \Delta_1 - \Delta_2$ and $\kappa = (3\Delta_1 - \Delta_2 - \Delta_3)/2$. The principal components ν_1 and ν_2 of the electric field gradient (EFG) tensor defined as $|\nu_1| \geq |\nu_2| \geq |\nu_3|$ are obtained by diagonalization of the tensor. The quadrupolar interaction can then be characterized by the quadrupolar coupling constant C_Q and the asymmetry parameter η_Q, which are defined as: $C_Q = e^2QV_0$, and $\eta_Q = (V_2 - V_1)/V_0$. V_0 is the proton charge, e Planck's constant and Q the quadrupole moment of the considered nucleus.[7] It should be noted that all NMR spectroscopic parameters were also calculated using the PARATEC code,[8] leading to very similar results (data not shown). For chemical shift calculations, estimated errors on calculated δ_i are $\delta = 0.5$ for 1H, 1.0 for 13C, 1.0 for 19F, and 5.0 ppm for ^{45}Ca. These values are extracted from the standard deviations obtained when correlating experimental and calculated chemical shift values on a series of reference compounds.[9-11]

Acknowledgements

This work was supported by the 7th European framework program (Marie Curie ERG 239206) and a Royal Society partnership grant (JPS000313). Synchrotron X-ray experiments were conducted at the Swiss-Norwegian beamline at ESRF (France). NMR spectroscopic calculations were performed on the IDRS supercomputer centre of the CNRS (Project: 091461). This work was also granted access to the HPC resources of CINES (Jade) under the allocation C2011081071 and C2012076866 made by GENCI (Grand Equipement National de Calcul Intensif) for geometry optimizations and IR calculations. C.Z.W. thanks the ENSCM for funding in support of his stay in the MACS research team of the Institut Charles Gerhardt. Some of the NMR spectroscopic equipment at Warwick used in this research was obtained through the Birmingham Science City Advanced Materials projects with support from Advantage West Midlands (AWM) and part funded by the European Regional Development Fund (ERDF). We acknowledge D. Cot, R. Podor, and J. Ravaux for their assistance with the SEM measurements, and H. Petitjean and J. M. Devossie for discussions.

[19] Neutron diffraction is not straightforward for boron-containing compounds, because the 11B isotope (20% natural abundance) can capture neutrons and form 3 α-particles and Li.

[22] It is noticeable that while one H-bond is present in the CaBBu phase, two had been found previously in the CaBPh phase. This is actually consistent with the fact that the relative intensity of the broad low-frequency OH bands with respect to the higher frequency ones is bigger for CaBPh than CaBBu.

[23] Discrepancies in the relative intensities of 13C NMR spectroscopic signals between experimental and simulated data are due to the fact that the CPMAS experiment is not quantitative, whereas simulations on the relaxed models were performed by considering that each C atom integrates for one. For the C atoms (attached to B), a further discrepancy is noticeable, because our simulations did not take into account the additional couplings between C and B (see main text).

[26] Other classifications of different types of H bonds would qualify those of “moderate” (see ref. 21).

[28] When the reaction is performed at reflux instead of room temperature, a mixture of several phases is obtained, as attested by the presence of new peaks at small angles on the XRD powder patterns.

[39] Published online: December 27, 2012