O.M3.P24

UNIVERSITÉ DE GENÈVE

Evidence for hydrogenation induced metal atom exchange in the C14 type structure of CeMn_{1.8}Al_{0.2}

Ya. Filinchuk, K. Yvon

Laboratoire de Crystallographie, Université de Genève, 24 Quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

Metal hydrides are of importance for hydrogen storage applications. Hydrogenation of intermetallic compounds is generally considered to leave their metal atom substructures intact except for a volume increase and possible lattice distortions. The present study on the pseudo-ternary compound CeMn_{1.8}Al_{0.2} shows that this is not necessarily true. The compound crystallizes with the hexagonal MgNi2 (C14) type structure and contains two transition metal sites (2a, 6h in space group P63/mmc) on which aluminium partially substitutes manganese. The sites are some 2.7 A apart from each other and one (2a) shows a slight preference for aluminium. It will be shown that hydrogenation of CeMn18Al02 leads to a metal atom exchange between these sites in the sense that aluminium in the hydride shows a clear preference for site 6h. These findings are of importance from a practical point of view because they could lead to a better understanding of hitherto unexplained effects observed during the first hydrogenation cycles in this and related metal hydrides

(1) Refinement results on X-ray data of the alloy Atom (site) 0.958(28) Ce (4f) 1/22/3 0.06277(12 Mn1 (2a) 0 0 0 1.364(53) 0.71(1) All (2a) 0.29(1) Mn2 (6h) 2) 1/4 1.364(53) 0.965(3) 0.8305(6) 0.035(3) Al2 (6h) a = 5.37446(9), c = 8.76403(16)Å, V = 219.232(6)Å³

 $R_{\rm B} = 2.94\%, R_{\rm p} = 31.0\%, R_{\rm wp} = 14.1\%, S = 1.86.$ Mn (1.33%)

(2) Refinement results on X-ray data of hydrogenated at -70°C alloy						
Atom (site)	x	у	z	Biso	Occup.	
Ce (4f)	1/2	2/3	0.0641(2)	0.20(7)		-
Mn1 (2a)	0	0	0	0.66(7)	0.88(2)	
All (2a)					0.12(2)	-
Mn2 (6h)	0.8382(13)	2x	1/4	0.66(7)	0.907(7)	

Al2 (6h)

a = 6.0559(6), c = 9.8442(11) Å, V = 312.66(6) Å³ – for the hydride a = 5.37473(13), c = 8.7663(3) Å, V = 219.31(1) Å³ – for the allow

 $R_{\rm B} = 5.13\%, R_{\rm p} = 18.5\%, R_{\rm wp} = 13.6\%, S = 1.47.$

CeHx (8.3%), unreacted alloy (1.5%), α-Mn (2.5%) and CeO1-x (1.2%)

(3) Refinement results on neutron diffraction data of non-annealed deute

Atom (site)	x	у	z	Biso	Occup.
Ce (4f)	1/2	2/3	0.0643(5)	0.30(6)	
Mn1 (2a)	0	0	0	1.41(10)	0.694(15)
All (2a)					0.306(15)
$\operatorname{Mn2}\left(6h\right)$	0.8390(10)	2x	1/4	1.41(10)	0.965(9)
Al2 (6h)					0.035(9)
D1 (24l)	0.0582(7)	0.3123(9)	0.5730(6)	2.33(6)	0.313(5)
D2 (12k ₂)	0.4539(11)	2 <i>x</i>	0.6422(6)	2.33(6)	0.413(8)
D3 (6h ₂)	0.487(3)	2 <i>x</i>	1/4	2.33(6)	0.273(7)
$\mathrm{D4}(6h_l)$	0.1883(12)	2 <i>x</i>	1/4	2.33(6)	0.584(9)

= 5.9789(6), c = 9.7601(13) Å, V = 302.15(6) Å³. $R_{\rm B} = 4.29\%, R_{\rm p} = 15.6\%, R_{\rm up} = 15.8\%, S = 3.14. \text{ CeH}_{\rm x} (5.6\%) \text{ and } \beta\text{-Mn} (21.5\%)$

(4) Refinement results on neutron diffraction data on annealed deuteride (175°C)					
Atom (site)	x	у	z	Biso	Occup.
Ce (4f)	1/2	2/3	0.0657(6)	1.28(10)	
Mn1 (2a)	0	0	0	3.26(15)	0.909(18)
All (2a)					0.091(18)
Mn2 (6h)	0.8384(18)	2x	1/4	3.26(15)	0.901(11)
Al2 (6h)					0.099(11)
D1 (24l)	0.0585(7)	0.3049(9)	0.5735(6)	1.80(7)	0.317(6)
D2 (12k2)	0.4499(16)	2x	0.6426(9)	1.80(7)	0.251(7)
D3 (6h ₂)	0.496(2)	2x	1/4	1.80(7)	0.307(8)
$D4(6h_i)$	0.1853(18)	2x	1/4	1.80(7)	0.426(9)

= 5.9363(8), c = 9.7629(17) Å, V = 297.94(8) Å³ $R_{\rm B} = 6.06\%, R_{\rm p} = 18.7\%, R_{\rm wp} = 16.0\%, S = 2.70. \text{ CeH}_{\rm x} (8.5\%), \beta-\text{Mn} (19.2\%)$

2 theta de

2 theta des

CeMn₁₈Al₀₂, annealed at 700C, X-ray

Conclusions

- tal atom distribution in the C14 structure of CeMn1.8Al0.2 changes during hydrogenation (deuteration) near ambient conditions. While the alloy shows a preference of aluminium for site 2a, the hydride and the annealed deuteride show nearly random occupancies of sites 2a and 6h by aluminium and manganese
- The metal atom exchange during hydrogenation (deuteration) presumably occurs between nearest neighbors that are distant by ~2.7 Å. The reasons for this exchange are unknown. During the rearrangement of the metal atom substructure repulsive H-Al interactions could play a role
- The effect presumably depends on the speed of hydrogenation (deuteration) and the local temperature increase of the metal grains during the (strongly exothermic) reaction.
- The volume expansion between the alloy and the hydride (42.5%) is the biggest known so far among reversible metal hydrides
- · The reasons for the exceptionally high mobility of the metal atom substructure of CeMn_{1.8}Al_{0.2} during hydrogenation near ambient conditions, and for the exceedingly big hydrogen induced volume expansion are not vet clear. A valence change of Ce (from +4 to +3) could be the reason of this.

Sample preparation

Alloy samples of nominal composition CeMn_{1.8}Al_{0.2} (~3 gram) were prepared from high purity elements at a slight excess of cerium (~3 at.%) by arc-melting and annealing at 700°C for 3 months. All operations were performed in an argon filled glove box to reduce oxygen contamination Before the X-ray measurements and/or hydrogen treatments the samples were ground and sieved to a particle size of less than 25um.

The samples were hydrided (deuterated) in a stainless autoclave. Various measures were taken to avoid the formation of binary CeH₂ and to improve the crystallinity of the ternary hydride, such as mixing initially hydrogen with argon, slowly increasing the hydrogen pressure, cooling the sample to $\sim -70^{\circ}$ C during hydrogenation by using a mixtures of solid carbon dioxide and acetone, and annealing the hydride (deuteride) sample for 8-10 hours under 3 bars of H₂ pressure at slightly elevated temperatures (~ 175°C).

Structure investigations

The alloys and hydrides (deuterides) were investigated by X-ray and neutron powder diffraction. For the X-ray measurements a Bruker D8 Advance diffractometer was used (Bragg-Brentano geometry, PSD, sample holder for air-sensitive substances, $CuK_{\alpha 1}$ radiation, 2 θ range $25-127^{\circ}$ for the alloy and $25-100^{\circ}$ for the hydrides; 2θ step 0.0144° ; T = 293 K, scan time up to 25 s per step). Structure refinements by the Rietveld method were performed with Fullprof by taking starting parameters for the atomic coordinates from [1]. The Al/Mn occupancies were constrained such as to yield to overall nominal composition of 10 at.% Al, i.e. only one parameter was refined to describe the Al/Mn distribution over sites 2a and 6h. The refinement results and X-ray diffraction patterns of one alloy sample and hydride obtained at low temperature are summarised in (1) and (2) respectively

Neutron diffraction data were collected on two (low-temperature) deuteride samples by using HRPT at the spallation neutron source SINQ of PSI (Villigen, $\lambda = 1.494$ Å; cylindrical vanadium holders, 20 range 4.95-164.9°; 20 step 0.05° ; T = 293 K, 8 hours per sample, high intensity mode). One sample (3) was measured immediately after deuteration while the other (4) was annealed at 175°C for 8 hours under 3 bars of deuterium pressure. During structure refinement the Al/Mn occupancies were refined under the same constraints as those used for the X-ray refinement Isotropic temperature factors for Al/Mn positions were constrained to be equal.

Results

Summary of occupancy factors for sites 2a and 6h for CeMn_{1.8}Al_{0.2} and its hydride (deuteride):

(1) Alloy (2) Hydride (3) Deuteride (4) Annealed deuteride

Al(2 <i>a</i>)	0.29(1)	0.12(2)	0.306(15)	0.091(18)
Mn(2a)	0.71(1)	0.88(2)	0.694(15)	0.909(18)
Al(6h)	0.035(3)	0.093(7)	0.035(9)	0.099(11)
Mn(6h)	0.965(3)	0.907(7)	0.965(9)	0.901(11)

- \geq alloy: the aluminium distribution over sites 2a and 6h is not random: aluminium clearly prefers site 2a. The sample is nearly single phase;
- · hydride: no site preference is apparent within experimental error. The sample has partially segregated into CeHx (8%). The cell volume has expanded by 42.5%;
- \succ deuteride: aluminium prefers site 2a as in the alloy sample. The sample has partially segregated into CeHx (6%) and Mn (22%);
- > deuteride annealed: after annealing at 175°C no site preference is apparent within experimental error

[1] K.J. Gross, D. Chartuni, F. Fauth, J. Allovs Comp., 2000, 306, 203-218.

The authors want to thank Dr. D. Sheptyakov for the help with neutron measurements

Crystal structure of CeMn18Al02, refined from single crystal X-ray data, 80% probability ellipsoids are shown